Khi nào thì: \(\left(x+1\right)^2\le0\)
tìm x và y biết
a) \(\left|5x+1\right|+\left|6y-8\right|\le0\)
b) \(\left|x+2y\right|+\left|4y-3\right|\le0\)
c) \(\left|x-y+2\right|+\left|2y+1\right|\le0\)
Với giá trị nào của x thì biểu thức :
P = \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\) đạt giá trị nhỏ nhất.
Tính giá trị nhỏ nhất ấy.
\(P=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(P=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(P=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(P=\left(x^2+5x\right)^2\ge-36\)
\(\Rightarrow GTNN\) của \(P=-36\)
Dấu = sảy ra khi:\(x^2+5x=0\)
.....................\(\Rightarrow x=0\) hoặc \(x=-5\)
Giải bất phương trình
1) \(\frac{x^4-1}{x^2+3x}+x^2\ge1\)
2) \(\left(x^4-5x^2+4\right)\left(\frac{x-2}{x}-3\right)\le0\)
3) \(\left(\frac{4}{x}-\frac{2}{x-1}\right)\left(\frac{x^2+1}{x}-2\right)\le0\)
4) \(\left(\sqrt{x^3-4x}-\sqrt{15}\right)\sqrt{\frac{1+x}{x}-2}\le0\)
a/
\(\Leftrightarrow\frac{\left(x^2-1\right)\left(x^2+1\right)}{x^2+3x}+x^2-1\ge0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{x^2+1}{x^2+3x}+1\right)\ge0\)
\(\Leftrightarrow\left(x^2-1\right)\left(\frac{2x^2+3x+1}{x^2+3x}\right)\ge0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)\left(x+1\right)\left(2x+1\right)}{x\left(x+3\right)}\ge0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(2x+1\right)\left(x+1\right)^2}{x\left(x+3\right)}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x< -3\\x=-1\\-\frac{1}{2}\le x< 0\\x\ge1\end{matrix}\right.\)
b/
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)\left(\frac{-2-2x}{x}\right)\le0\)
\(\Leftrightarrow\frac{-2.\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x+1\right)}{x}\le0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x+1\right)^2}{x}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}x\le-2\\x=-1\\0< x\le1\\x\ge2\end{matrix}\right.\)
c/
\(\Leftrightarrow\left(\frac{4\left(x-1\right)-2x}{x\left(x-1\right)}\right)\left(\frac{x^2+1-2x}{x}\right)\le0\)
\(\Leftrightarrow\frac{\left(2x-4\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)
\(\Leftrightarrow\frac{\left(x-2\right)\left(x-1\right)^2}{x^2\left(x-1\right)}\le0\)
\(\Rightarrow1< x\le2\)
d/
ĐKXĐ: \(\left\{{}\begin{matrix}x^3-4x\ge0\\\frac{1+x}{x}-2\ge0\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x-2\right)\left(x+2\right)\ge0\\\frac{1-x}{x}\ge0\\x\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}-2\le x\le0\\x\ge2\end{matrix}\right.\\0< x\le1\\x\ne0\end{matrix}\right.\)
\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ
Vậy BPT đã cho vô nghiệm
Tặng 5 coin :<
\(\left|x+1\right|\left|x+2\right|\left|x+3\right|\le0\)
acc 0 GP mà vẫn có coin để cho
:) phục thật sự
-Vì \(\left|x+1\right|\left|x+2\right|\left|x+3\right|\ge0\forall x\) nên từ đây suy ra:
\(\left|x+1\right|\left|x+2\right|\left|x+3\right|=0\)
\(\Leftrightarrow\left|x+1\right|=0\) hay \(\left|x+2\right|=0\) hay \(\left|x+3\right|=0\)
\(\Leftrightarrow x=-1\) hay \(x=-2\) hay \(x=-3\)
-Vậy nghiệm của bất phương trình là \(x\in\left\{-1;-2;-3\right\}\)
Giải các bất phương trình sau :
a) \(\left\{{}\begin{matrix}x^2\ge0,25\\x^2-x\le0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\left(x-1\right)\left(2x+3\right)>0\\\left(x-4\right)\left(x+\dfrac{1}{4}\right)\le0\end{matrix}\right.\)
a)
\(\left\{{}\begin{matrix}x^2\ge\dfrac{1}{4}\left(1\right)\\x^2-x\le0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)x^2-0,25\Leftrightarrow\left[{}\begin{matrix}x\le-\dfrac{1}{2}\\x\ge\dfrac{1}{2}\end{matrix}\right.\)
(2)\(x^2-x\le\) \(\Leftrightarrow0\le x\le1\)
Kết hợp (1) và (2) \(\Rightarrow\dfrac{1}{2}\le x\le1\)
b)
\(\left\{{}\begin{matrix}\left(x-1\right)\left(2x+3\right)>0\left(1\right)\\\left(x-4\right)\left(x+\dfrac{1}{4}\right)\le0\left(2\right)\end{matrix}\right.\)
Giải: \(\left(1\right)\left(x-1\right)\left(2x+3\right)>0\Leftrightarrow\left[{}\begin{matrix}x< -\dfrac{3}{2}\\x>1\end{matrix}\right.\)
Giải: (2) \(\left(x-4\right)\left(x+\dfrac{1}{4}\right)< 0\Leftrightarrow-\dfrac{1}{4}\le x\le4\)
Kết hợp điều kiện của (1) và (2) ta có: (1;4] là nghiệm của hệ bất phương trình.
a) \(\left|x+3\right|+\left|x+1\right|-x+4\le0\)
b)\(\left|x^2-x-3\right|\ge2x+3\)
c) \(\left|3x-1\right|< x^2-x+2\)
Hệ bất phương trình \(\left\{{}\begin{matrix}x^2-5x+4\le0\\x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\end{matrix}\right.\) có tập nghiệm biểu diễn trên trục số có độ dài bằng 1, với giá trị của m bằng ?
Xác định miền nghiệm:
a, \(\left\{{}\begin{matrix}x+y+2>0\\2x-3y-6\le0\\x-2y+3\le0\\\left|y\right|>1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x+y-2\ge0\\x-3y+3\le0\\-1\le x\le1\end{matrix}\right.\)
hệ bpt\(\left\{{}\begin{matrix}x^2-5x+4\le0\\x^2-\left(m^2+3\right)+2\left(m^2+1\right)\le0\end{matrix}\right.\) có tập nghiệm biểu diễn trên trục số có độ dài bằng 1 , với giá trị của m là
Xét \(x^2-5x+4\le0\Leftrightarrow1\le x\le4\Rightarrow D_1=\left[1;4\right]\)
Xét \(x^2-\left(m^2+3\right)x+2\left(m^2+1\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-m^2-1\right)\le0\)
- Nếu \(\left|m\right|\ge1\Rightarrow D_2=\left[2;m^2+1\right]\)
- Nếu \(\left|m\right|< 1\Rightarrow D_2=\left[m^2+1;2\right]\)
Do \(2\in\left[1;4\right]\), để \(D=D_1\cap D_2\) là 1 đoạn có độ dài bằng 1
\(\Leftrightarrow\left[{}\begin{matrix}m^2+1=1\\m^2+1=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\pm\sqrt{2}\end{matrix}\right.\)