Tìm số hạng tổng quát của dãy và tìm lim un
Cho dãy số (un) thỏa mãn u1 = \(\dfrac{2}{3}\) và un+1 = \(\dfrac{u_n}{2\left(2n+1\right)u_n+1}\left(n\ge1\right)\). Tìm số hạng tổng quát un của dãy. Tính lim un
Cho dãy số u n có công thức tổng quát là u n = 2 n + 1 .Tìm số hạng thứ 3 của dãy số?
A. u 3 = 8
B. u 3 = 7
C. u 3 = 16
D. u 3 = 9
Cho dãy số u n biết u 1 = 2 u n + 1 = 2 u n ∀ n ∈ N * . Tìm số hạng tổng quát của dãy số này?
A. u n = 2 n
B. u n = n n − 1
C. u n = 2
D. u n = 2 n + 1
Cho dãy số \(u_n\)xác định bởi \(\hept{\begin{cases}u_1=\frac{1}{3}\\u_n=\frac{n+1}{3n}.u_n\end{cases}}\)Với mọi \(n\inℕ^∗\)
Tìm số hạng tổng quát của dãy và tìm lim(un)
Tìm công thức tính số hạng tổng quát u n theo n của dãy số sau u 1 = 3 u n + 1 = u n + 2
A. u n = 3 n + n 2 - 1
B. u n = 2 n + 1
C. u n = 4 n - 10
D. Đáp án khác
Ta có:
u 2 = u 1 + 2 = 3 + 2 = 5.
u 3 = u 2 + 2 = 5 + 2 = 7.
u 4 = u 3 + 2 = 7 + 2 = 9.
u 5 = u 4 + 2 = 9 + 2 = 11.
Từ các số hạng đầu trên, ta dự đoán số hạng tổng quát u n có dạng:
u n = 2 n + 1 ∀ n ≥ 1 ∗
Ta dùng phương pháp chứng minh quy nạp để chứng minh công thức (*) đúng.
Với n =1 ; u 1 = 2 . 1 + 1 = 3 (đúng). Vậy (*) đúng với n =1
Giả sử (*) đúng với n =k. Có nghĩa ta có: u k = 2 k + 1 (2)
Ta cần chứng minh (*) đúng với n = k+1 - có nghĩa là ta phải chứng minh:
u k + 1 = 2(k+1)+1= 2k + 3
Thật vậy từ hệ thức xác định dãy số và theo (2) ta có:
u k + 1 = u k +2 = 2k +1 +2 = 2k + 3
Vậy (*) đúng khi n = k+1 .
Kết luận (*) đúng với mọi số nguyên dương n.
Đáp án B
Cho dãy số biết :
với
Viết năm số hạng đầu và tìm công thức tính số hạng tổng quát un theo n
u1=-1
u2=-1+3=2
u3=2+3=5
u4=5+3=8
u5=8+3=11
Công thức tổng quát là: \(U_n=U_1+\left(n-1\right)\cdot\left(3\right)=-1+3n-3=3n-4\)
Cho dãy số (Un) được xác định bởi: u1 = \(\dfrac{1}{3}\) và un+1 = \(\dfrac{2u_n}{2u_n\left(3n-1\right)+1}\), ∀n ∈ N*.
a) Tìm u4 và số hạng tổng quát un của dãy số.
b) Tính S = \(\dfrac{1}{u_1}+\dfrac{1}{u_2}+...+\dfrac{1}{u_n}\) (tổng gồm n số hạng) theo n.
Help me!!!
Gấp lắm ạ
Thank you so much!!!
Cho dãy số u n biết u 1 = 2 u n + 1 = 2 u n ∀ n ∈ ℕ * . Tìm số hạng tổng quát của dãy số này ?
A. u n = 2 n
B. u n = n n - 1
C. u n = 2
D. u n = 2 n + 1
Đáp án A
Ta có u n = u 1 q n - 1 = 2 . 2 n - 1 = 2 n
Cho dãy số u n biết u 1 = 2 u n + 1 = 2 u n , ∀ n ∈ ℕ * . Tìm số hạng tổng quát của dãy số này?
A. u n = 2 n
B. u n = n n − 1
C. u n = 2
D. u n = 2 n + 1
Đáp án A
u
2
=
2
u
1
=
2
2
;
u
3
=
2
u
2
=
2
3
,
...
,
u
n
=
2
n
Tìm công thức của số hạng tổng quát của các dãy u n biết: u 1 = 5 u n + 1 = u n + 3 n - 2 , n ≥ 1
A. u n = 3 n 2 - 17 n + 4 2
B. u n = 1 - n
C. u n = 1 - 3 n 2 - 17 n + 4 2
D. Tất cả sai