phân tích thành nhân tử :
a. \(x^5+x+1\)
b. \(x^7+x^2+1\)
phân tích đa thức thành nhân tử
a, x^7 + x^2 + 1
b, x^10 + x^5 + 1
c, x^7 + x^5 + 1
d, x^5 + x + 1
x^10 + x^5 + 1
= x^10 + x^9 - x^9 + x^8 - x^8 + x^7 - x^7 + x^6 - x^6 + x^5 + x^5 - x^5 + x^4 - x^4 + x^3 - x^3 + x^2 - x^2 + x - x + 1
= (x^10 + x^9 + x^8) - (x^9 + x^8 + x^7) + (x^7 + x^6 + x^5) - (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) - (x^3 + x^2 + x) + (x^2 + x + 1)
= x^8 (x^2 + x + 1) - x^7 (x^2 + x + 1) + x^5 (x^2 + x + 1) - x^4 (x^2 + x + 1) + x^3 (x^2 + x + 1) - x (x^2 + x + 1) + (x^2 + x + 1)
= (x^2 + x + 1) (x^8 - x^7 + x^5 - x^4 + x^3 - x + 1)
-----------------------
Phương pháp:
Khi gặp bài toán phân tích thành nhân tử dạng x^(3m + 1) + x^(3n + 2) + 1 em thêm bớt các hạng tử từ bậc cao nhất trừ đi 1 đến x (bậc nhất) sao cho tổng số các hạng tử trong đa thức mới là một bội của 3. Sau đó nhóm ba hạng tử một sao cho trong mỗi nhóm có x² + x + 1
Dạng này khi phân tích luôn có kết quả là: (x² + x + 1).Q(x)
x^7 + x^2 + 1 = x^7 + x^6 - x^6 + x^5 - x^5 + x^4 - x^4 +x^3 - x^3 +2x^2 - x^2 +x - x +1
=(x^7 + x^6 + x^5) - (x^6 +x^5 +x^4) + (x^4 + x^3 +x^2) - (x^3 +x^2 + x) + (x^2 + x +1)
=x^5(x^2 + x + 1) - x^4(x^2 + x + 1) +x^2(x^2 + x + 1) - x(x^2 + x + 1) + (x^2 + x + 1)
=(x^2 + x + 1)(x^5 - x^4 +x^2 -x +1)
1. Phân tích thành nhân tử
a) x^2(x+1) - x(x-1)
b) 5(a-b)^2 - (a+b).(b-a)
2. Tìm x biết x(x+7) = 4x = 28
1. Phân tích thành nhân tử
a) x^2(x+1) - x(x-1)
b) 5(a-b)^2 - (a+b).(b-a)
2. Tìm x biết x(x+7) = 4x = 28
1)a) x^2(x+1) - x(x-1)
=x.[x(x+1)-(x-1)]
=x.(x2+x-x+1)
=x.(x2+1)
b) 5(a-b)^2 - (a+b).(b-a)
=5(a-b)2+(a+b)(a-b)
=(a-b)[5.(a-b)+(a+b)]
=(a+b)(5a-5b+a+b)
=(a+b)(6a-4b)
=2(a+b)(3a+2b)
1) xem lại đề
câu 1:tính
a) 4x2-9y2 b) ( 3x+y)3
câu 2 phân tích đa thức thành nhân tử
b) 4x2-12x+9
câu 3:tìm x,biết:6x3+16x2-150x-400=0
câu 4:phân tích đa thức thành nhân tử:D=(x+1)(x+3)(x+5)(x+7)+15
Phân tích đa thức sau thành nhân tử :
a) x5+x-1
b) x7+x2+1
a) \(x^5+x-1\)
\(=x^5+x^4+x^3+x^2-x^4-x^3-x^2+x-1\)
\(=\left(x^5-x^4+x^3\right)+\left(x^4-x^3+x^2\right)-\left(x^2-x+1\right)\)
\(=x^3\left(x^2-x+1\right)+x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)(còn 1 cách nữa là thêm bớt \(x^2\)vào bạn nhé!)
b) \(x^7+x^2+1\)
\(=x^7-x+x^2+x+1\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
(Chúc bạn học tốt và nhớ tíck cho mình với nhé!)
Phân tích đa thức thành nhân tử
a)x^5-x^4-1
b)x^8+x^7+1
a) \(x^5-x^4-1\)
\(=\left(x^5+x^2\right)-\left(x^4+x\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x^3+1\right)-x\left(x^3+1\right)-\left(x^2-x+1\right)\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-x^2-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
b) \(x^8+x^7+1\)
\(=\left(x^8-x^2\right)+\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^6-1\right)+x\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x^3-x^2\right)\left(x^3+1\right)+\left(x^2-x\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[\left(x^3-x\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
a) \(x^5-x^4-1=x^5+x^2-x^4-x^2-1\)
\(=x^2\left(x^3+1\right)-\left(x^4+x^2+1\right)=x^2\left(x+1\right)\left(x^2-x+1\right)-\left[\left(x^2\right)^2+2x^2+1-x^2\right]\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left[\left(x^2+1\right)-x^2\right]\)
\(=x^2\left(x+1\right)\left(x^2-x+1\right)-\left(x^2-x+1\right)\left(x^2+x+1\right)\)
\(=\left(x^2-x+1\right)\left[x^2\left(x+1\right)-\left(x^2+x+1\right)\right]\)
\(=\left(x^2-x+1\right)\left(x^3+x^2-x^2-x-1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
b) \(x^8+x^7+1=x^8+x^7+x^6-x^6+1\)
\(=x^6\left(x^2+x+1\right)-\left(x^6-1\right)=x^6\left(x^2+x+1\right)-\left[\left(x^3\right)^2-1\right]\)
\(=x^6\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)=x^6\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)
\(=\left(x^2+x+1\right)\left[x^6-\left(x-1\right)\left(x^3+1\right)\right]=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
Mong cô Chuy cho e thêm 1 Gp nựa nha cô '-'
Phân tích đa thức thành nhân tử:
a)\(x^7+x^2+1\)
b)\(x^7+x^5+1\)
\(x^7+x^2+1\)
\(=x^7+x^6+x^5+x^4+x^3+x^2+x+1\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
a) \(x^7+x^2+1=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
b) \(x^7+x^5+1=\left(x^7+x^6+x^5\right)-\left(x^6-1\right)\)
\(=x^5\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)
\(=x^5\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)
\(=\left(x^2+x+1\right)\left[x^5-\left(x-1\right)\left(x^3+1\right)\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
Phân tích nhân tích thành tử:
a) x5 + x +1
b) x7 + x5 + 1
\(x^5+x+1\)
\(=x^5-x^4+x^2+x^4-x^3+x+x^3-x^2+1\)
\(=x^2\left(x^3-x^2+1\right)+x\left(x^3-x^2+1\right)+\left(x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)
Bài 1: Phân tích các đa thức sau thành nhân tử:
a) (x - 1)(x - 2)(x - 5)(x - 7) - 20
b) (2x + 1)(x + 1)2(2x + 3) - 18
Phân tích đa thức thành nhân tử :
a) C = ( x^2 - 2x + 3 )( x^2 - 2x + 5 ) - 8
b) D = x^8 + x^7 + 1
ủa phần a mình phân tích rồi mà bạn hu hu