Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vân Ngô
Xem chi tiết
Tẫn
30 tháng 7 2018 lúc 19:04

Bài 1 :

\(2^1+2^2+2^3+...+2^{60}.\)

\(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)

\(=2.3+2^3.3+...+5^{59}.3\)

\(=3.\left(2+2^3+...+2^{59}\right)\)

\(\Rightarrow\left(2^1+2^2+....+2^{60}\right)⋮3\)

Bài 2 : Đề sai nhé ví dụ 1 và 2 : 1 x 2 = 2 không chia hết cho 6

Phong Linh
31 tháng 7 2018 lúc 6:19

Bài 2 : hs3 số tự nhiên liên tiếp chia hết cho 6

+ trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2

+ gọi số thứ nhất là : 2a ; 2a + 1 ; 2a + 2

+ a là số chẵn => 2a + 1 chia hết cho 3

+ a là số lẻ => 2a + 2 chia hết chO 3

Vậy trong ba số tự nhiên liên tiếp luôn chia hết cho 2.3 = 6

phamthithanhtam
Xem chi tiết
An Hoà
20 tháng 10 2016 lúc 12:41

bài 1 :

Ta có :

abab = 1000a + 100b + 10 a + b

         = 1010a + 101b

         = 101 ( 10a + b )

Vì 101 chia hết cho 101

=> 101 ( 10a + b ) chia hết cho 101

Vậy abab là bội của 101

bài 2

Ta có :

aaabbb = 111000a + 111b

             = 37 ( 3000a + 3 b )

Vì 37 chia hết cho 37

=> 37 ( 3000a + 3b ) chia  hết cho 37

Vậy 37 là ước của aaabbb

Minh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 22:41

a: 6x^2-7x-3=0

=>6x^2-9x+2x-3=0

=>(2x-3)(3x+1)=0

=>x=-1/3 hoặc x=3/2

=>ĐPCM

b: 2x^2-5x-3=0

=>2x^2-6x+x-3=0

=>(x-3)(2x+1)=0

=>x=-1/2 hoặc x=3

=>ĐPCM

phan van co 4
Xem chi tiết
Hoàng Nguyễn Xuân Dương
28 tháng 4 2015 lúc 7:14

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

jimmydozen
25 tháng 6 2015 lúc 15:08

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

Nguyen Quynh Tram
15 tháng 10 2015 lúc 21:23

cho mình hỏi nhờ cũng cái đề bài này nhưng chia hết cho 37 làm thế nào

 

Dou Shi
Xem chi tiết
Trần Quang Khải
Xem chi tiết
Phạm Thanh Thảo
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 11 2021 lúc 19:35

\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)

pe_mèo
Xem chi tiết

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

Bài 3: 

\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8

Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7 

⇒ 7040 + a \(\times\) 100 ⋮ 7

1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7 

        5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)

Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7 

⇒ 7048 + a\(\times\) 100 ⋮ 7

1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7

       6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)

Nếu b = 4 ta có: \(\overline{7a4b}\)  =  \(\overline{7a44}\) ⋮ 7

⇒ 7044 + 100a ⋮ 7

1006.7 + 2 + 14a + 2a ⋮ 7 

       2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)

Kết hợp (1); (2); (3) ta có:

(a;b) = (1;0); (8;0); (4;8); (6;4)

nguyễn thành trung
Xem chi tiết
Nghiêt Hồ
Xem chi tiết
Lê Song Phương
28 tháng 9 2023 lúc 16:56

Xét biểu thức \(P=10^0+10^1+10^2+...+10^{2021}\)

\(\Rightarrow10P=10^1+10^2+10^3+...+10^{2022}\)

\(\Rightarrow9P=10^{2022}-1\)

\(\Rightarrow10^{2022}+8=9P+9⋮9\)

Vậy ta có đpcm.

 

Lê Song Phương
28 tháng 9 2023 lúc 16:58

Cách 2: Ta thấy \(10=9+1\) nên 

\(10^{2022}=\left(9+1\right)^{2022}\) \(=\left(9+1\right)\left(9+1\right)...\left(9+1\right)\) (2022 lần)

\(=9Q+1\) (Q là 1 biểu thức).

 Vậy \(10^{2022}-1=9Q⋮9\), cũng suy ra đpcm.

Kiều Vũ Linh
28 tháng 9 2023 lúc 17:12

Đặt A = 10²⁰⁰² + 8

= 1000...000 + 8 (2002 chữ số 0)

Tổng các chữ số của A:

1 + 0 + 0 + ... + 0 + 8 (2002 chữ số 0)

= 9

Ta có:

9 ⋮ 9

9 ⋮ 3

Vậy A ⋮ 9 và A ⋮ 3