Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thanh nguyen
Xem chi tiết
Phạm Phương Anh
25 tháng 12 2016 lúc 19:48

Mình sẽ trình bày rõ hơn ở (2) nha

Ta có:

\(\frac{2}{x+1}=\frac{3}{2y-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2}{x+1}=\frac{3}{2y-3}\) = \(\frac{2-3}{\left(x+1\right)-\left(2y-3\right)}=\frac{-1}{x+1-2y+3}=\frac{-1}{x-2y+4}\)

(Vì trước ngoặc của 2y - 3 là dấu trừ nên khi phá ngoặc thì nó sẽ trở thành dấu cộng.Đây là quy tắc phá ngoặc mà bạn đã được học ở lớp 6 đó)

thu dinh
Xem chi tiết
Vũ Minh Tuấn
26 tháng 7 2019 lúc 17:20

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

Lê Thu Trang
Xem chi tiết

giải pt bậc 3 trở lên fr...
Xem chi tiết
mimiru
18 tháng 8 2018 lúc 13:23

đây là toàn lp 3 hả bn

Ngô Thị Thu Huyền
18 tháng 8 2018 lúc 13:25

đây ko phải toán lớp 3

giải pt bậc 3 trở lên fr...
18 tháng 8 2018 lúc 13:26

quên đây là toán lớp 1 

Nhan Thị Thảo Vy
Xem chi tiết
💋Amanda💋
25 tháng 3 2020 lúc 19:07
https://i.imgur.com/7cnlYst.jpg
Khách vãng lai đã xóa
Nguyễn Ngọc Lộc
25 tháng 3 2020 lúc 19:13

a, Ta có : \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}-\left(x-y\right)=4-10=-6\\\left(x+y\right)+2\left(x-y\right)=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=x-6\\\left(x+x-6\right)+2\left(x-x+6\right)=5\end{matrix}\right.\)

=> ​​\(\left\{{}\begin{matrix}y=x-6\\x+x-6+12=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=x-6\\2x=-1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}y=-\frac{1}{2}-6=-\frac{13}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)

Vậy phương trình có nghiệm duy nhất là \(\left(x;y\right)=\left(-\frac{1}{2};-\frac{13}{2}\right)\)

b, ĐKXĐ : \(\left\{{}\begin{matrix}x-2y\ne0\\x+2y\ne0\end{matrix}\right.\)

=> \(x\ne\pm2y\)

- Ta có : \(\left\{{}\begin{matrix}\frac{6}{x-2y}+\frac{2}{x+2y}=3\\\frac{3}{x-2y}+\frac{4}{x+2y}=-1\end{matrix}\right.\)

=> ​​\(\left\{{}\begin{matrix}\frac{6}{x-2y}+\frac{2}{x+2y}=3\left(I\right)\\\frac{6}{x-2y}+\frac{8}{x+2y}=-2\left(II\right)\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}\frac{12}{x-2y}+\frac{4}{x+2y}=6\left(III\right)\\\frac{3}{x-2y}+\frac{4}{x+2y}=-1\left(IV\right)\end{matrix}\right.\)

- Lấy ( I ) - ( II ) và ( III ) - ( IV ) ta được hệ phương trình :

\(\left\{{}\begin{matrix}-\frac{6}{x+2y}=5\\\frac{9}{x-2y}=7\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x+10y=-6\\7x-14y=9\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}35x+70y=-42\\35x-70y=45\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}-\frac{6}{x+2y}=5\\140y=-87\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}-\frac{6}{x-\frac{174}{140}}=5\\y=-\frac{87}{140}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}5x-\frac{870}{140}=-6\\y=-\frac{87}{140}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{3}{70}\\y=-\frac{87}{140}\end{matrix}\right.\)

Vậy hệ phương trình trên có nghiệm duy nhất là \(\left(x;y\right)=\left\{\frac{3}{70};-\frac{87}{140}\right\}\)

Khách vãng lai đã xóa
Trần Ngọc Thảo
Xem chi tiết
Nguyễn Ngọc Lộc
27 tháng 2 2020 lúc 20:36

ĐKXĐ : \(\left\{{}\begin{matrix}4-x\ne0\\3-2y\ne0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ne4\\y\ne\frac{3}{2}\end{matrix}\right.\)

Ta có : \(\left\{{}\begin{matrix}\frac{2x}{4-x}-\frac{5y}{3-2y}=-4\\\frac{3x}{4-x}-\frac{2y}{3-2y}=5\end{matrix}\right.\)

- Đặt \(\frac{1}{4-x}=a,\frac{1}{3-2y}=b\) ta được hệ phương trình :

\(\left\{{}\begin{matrix}2ax-5by=-4\\3ax-2by=5\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}6ax-15by=-12\\6ax-4by=10\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2ax-5by=-4\\-11by=-22\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}2ax-10=-4\\by=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}ax=3\\by=2\end{matrix}\right.\)

- Thay lại \(\frac{1}{4-x}=a,\frac{1}{3-2y}=b\) vào hệ phương trình trên ta được :

\(\left\{{}\begin{matrix}\frac{x}{4-x}=3\\\frac{y}{3-2y}=2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=12-3x\\y=6-4y\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}4x=12\\5y=6\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=3\\y=\frac{6}{5}\end{matrix}\right.\) ( TM )

Vậy hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(3,\frac{6}{5}\right)\)

Khách vãng lai đã xóa
Trần Ngọc Thảo
27 tháng 2 2020 lúc 20:21
Khách vãng lai đã xóa
Righteous Angel
Xem chi tiết
Bao Cao Su
Xem chi tiết
Bui Huyen
27 tháng 7 2019 lúc 9:28

\(hpt\Leftrightarrow\hept{\begin{cases}\frac{20}{x+2y}-\frac{5}{x-2y}=5\\\frac{20}{x+2y}+\frac{3}{x-2y}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{8}{x-2y}=-4\\\frac{20}{x+2y}+\frac{3}{x-2y}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x-2y}=-\frac{1}{2}\\\frac{1}{x+2y}=\frac{1}{8}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x-2y=-2\\x+2y=8\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{5}{2}\end{cases}}\)

duy
20 tháng 1 2020 lúc 19:41

câu hỏi hay nhưng ko hay bằng mình

             Dân ta phải biết sử ta 

        Cái gì hổng biết lên tra google

                 Chúc học tốt

Khách vãng lai đã xóa
Park Jimin
20 tháng 1 2020 lúc 20:20

TÊN HAY HƠN CÂU HỎI

Khách vãng lai đã xóa
Arceus Official
Xem chi tiết
Tuyển Trần Thị
8 tháng 2 2018 lúc 18:14

\(\hept{\begin{cases}\frac{1}{x+y-2}+1+\frac{4}{x+2y}=3\\\frac{x+y}{x+y-2}-1-\frac{8}{x+2y}=1-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y-2}+\frac{4}{x+2y}=2\\\frac{2}{x+y-2}-\frac{8}{x+2y}=0\end{cases}}\)

đén đay bn đặt \(\frac{1}{x+y-2}=a;\frac{1}{x+2y}=b\)

hpt = ..... =.= 

Thu Lê Nhật
Xem chi tiết
💋Amanda💋
27 tháng 2 2020 lúc 19:29
https://i.imgur.com/HFX5QWj.jpg
Khách vãng lai đã xóa
Thu Lê Nhật
27 tháng 2 2020 lúc 20:13

con cach nao khac ko vay

Khách vãng lai đã xóa
Thu Lê Nhật
27 tháng 2 2020 lúc 20:14

tai luc kt ket qua ko dung

Khách vãng lai đã xóa