Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoang NGo
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2022 lúc 15:42

b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)

a: Đề sai rồi bạn

Nguyễn Ngọc Huy Toàn
13 tháng 2 2022 lúc 15:45

a.=> BC = BH + CH = 1 + 3 = 4 cm

áp dụng định lý pitago vào tam giác vuông AHB

\(AB^2=HB^2+AH^2\)

\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)

áp dụng định lí pitago vào tam giác vuông AHC

\(AC^2=AH^2+HC^2\)

\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)

GDA NAM
Xem chi tiết
Nguyễn Huy Tú
30 tháng 7 2021 lúc 11:03

Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=4+25=29\Rightarrow BC=\sqrt{29}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{10}{\sqrt{29}}=\frac{10\sqrt{29}}{29}\)cm 

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{4}{\sqrt{29}}=\frac{4\sqrt{29}}{29}\)cm 

* Áp dụng hệ thức : \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{25}{\sqrt{29}}=\frac{25\sqrt{29}}{29}\)cm 

Khách vãng lai đã xóa
kjhgfd
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 19:36

\(AH=\sqrt{21}\left(cm\right)\)

Tiếng anh123456
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2023 lúc 20:10

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC 

=>HB*HC=4

BH+CH=5

=>BH=5-CH

HB*HC=4

=>HC(5-CH)=4

=>5HC-HC^2-4=0

=>HC^2-5HC+4=0

=>HC=1cm hoặc HC=4cm

TH1: HC=1cm

=>HB=4cm

\(AB=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right);AC=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right)\)

TH2: HC=4cm

=>HB=1cm

\(AB=\sqrt{1\cdot5}=\sqrt{5}\left(cm\right);AC=\sqrt{4\cdot5}=2\sqrt{5}\left(cm\right)\)

Phạm hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2021 lúc 13:33

Ta có: BH-HC=5(gt)

mà BH+CH=15

nên 2BH=20

hay BH=10

Suy ra: HC=5

\(\Leftrightarrow AH=\sqrt{10\cdot5}=5\sqrt{2}\left(cm\right)\)

\(\Leftrightarrow AB=\sqrt{\left(5\sqrt{2}\right)^2+10^2}=5\sqrt{6}\left(cm\right)\)

\(\Leftrightarrow AC=\sqrt{15^2-150}=5\sqrt{3}\left(cm\right)\)

Lê Trang
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2023 lúc 18:34

loading...  

Nguyễn Vũ Hà Anh
Xem chi tiết
Nguyễn Huy Tú
23 tháng 1 2022 lúc 11:48

a, Theo định lí Pytago tam giác ABH vuông tại H

\(AB=\sqrt{BH^2+AH^2}=\sqrt{5}cm\)

Theo định lí Pytago tam giác AHC vuông tại H

\(AC=\sqrt{AH^2+HC^2}=\sqrt{4+9}=\sqrt{13}\)cm 

-> BC = HB + HC = 4 cm 

b, Ta có tam giacs ABC đều mà BH là đường cao hay BH đồng thời là đường trung tuyến 

=> AH = AC/2 = 5/2 

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{5\sqrt{3}}{2}cm\)

Nguyễn Hà Thảo
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 9 2021 lúc 10:10

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

Hạ Ann
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 20:11

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)