Tìm \(x\), biết:
\(y=\frac{x^4-2x^3+1}{x^2+1}\)
Bài 1: Tìm các số x; y; z biết rằng \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y - z = 124.
Bài 2: Tìm các số x; y; z biết rằng \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
1/ Tìm x, y biết:
a/ \(\frac{x}{y}=\frac{7}{3}\)và 5x - 2y = 87
b/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
2/ Tìm các số a, b, c biết rằng: 2a = 3b; 5b = 7c và 3a+5c - 7b = 30
3/ Tìm các số x; y; z biết rằng:
a/ \(3x=2y;7y=5z\) và x - y + z =32
b/ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z =49
c/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y - z =50
4/ Tìm các số x; y; z biết rằng:
a/ \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
b/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
c/ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
d/ \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
1.
a)Ta có: 3.x=y.7
3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau
suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)
7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau
suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)
(y khác 0 nên k khác 0)
vậy: x=2.k
y=5.k
(k thuộc tập hợp Z và k khác 0)
Bài 2
a) Tìm x biết\(\frac{1}{2}-\left|\frac{5}{4}-2x\right|=\frac{1}{3}\)
b) Tìm x biết \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
c) Tìm ba số x, y, z thỏa mãn: \(\frac{x}{y}=\frac{10}{9};\frac{y}{z}=\frac{3}{4}\)và \(x-y+z=78\)
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
c) \(\frac{x}{y}=\frac{10}{9}\Leftrightarrow\frac{x}{10}=\frac{y}{9};\frac{y}{z}=\frac{3}{4}\Leftrightarrow\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{y}{9}=\frac{x}{12}\)
\(\Leftrightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\). Mà \(x-y+z=78\). Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
\(\Rightarrow x=6.10=60;y=6.9=54;z=6.12=72\)
Vậy..........
Tìm x,y,z biết: \(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z+2}{2x+5}\)
Sử dụng tính chất của dãy tỉ số bằng nhau thì :
\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}\)
Do \(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z+2}{2x+5}\)
Suy ra \(\frac{x+y+z+2}{9}=\frac{x+y+z+2}{2x+5}< =>2x+5=9\)
\(< =>2x=4< =>x=\frac{4}{2}=2\)
Thế vào thì ta được : \(\hept{\begin{cases}\frac{x+1}{2}=\frac{y-1}{3}< =>\frac{3}{2}=\frac{y-1}{3}\\\frac{x+1}{2}=\frac{z+2}{4}< =>\frac{3}{2}=\frac{z+2}{4}\end{cases}}\)
\(< =>\hept{\begin{cases}2\left(y-1\right)=9\\2\left(z+2\right)=12\end{cases}< =>\hept{\begin{cases}2y-2=9\\2z+4=12\end{cases}}}\)
\(< =>\hept{\begin{cases}2y=11< =>y=\frac{11}{2}\\2z=8< =>z=\frac{8}{2}=4\end{cases}}\)
Vậy ta có bộ số x,y,z thỏa mãn đẳng thức sau : \(\left\{2;\frac{11}{2};4\right\}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z}{2x+5}\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}=\frac{x+y+z}{9}\)(1)
Từ (1) => \(\frac{x+y+z}{2x+5}=\frac{x+y+z}{9}\)
=> 2x + 5 = 9
=> 2x = 4
=> x = 2
Thay x vào (1)
=> \(\frac{2+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}\)
=> \(\frac{y-1}{3}=\frac{z+2}{4}=\frac{3}{2}\)
=> \(\hept{\begin{cases}\frac{y-1}{3}=\frac{3}{2}\\\frac{z+2}{4}=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{3}{2}.3+1\\z=\frac{3}{2}.4-2\end{cases}}\Rightarrow\hept{\begin{cases}y=\frac{11}{2}\\z=4\end{cases}}\)
Vậy x = 2 ; y = 11/2 ; z = 4
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}=\frac{x+y+z+2}{2x+5}=\frac{x+1+y-1+z+2}{2+3+4}=\frac{x+y+z+2}{9}\)
=> \(\frac{x+y+z+2}{2x+5}=\frac{x+y+z+2}{9}\)
Nếu x + y + z + 2 = 0 => \(\hept{\begin{cases}\frac{x+1}{2}=0\\\frac{y-1}{3}=0\\\frac{z+2}{4}=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=1\\z=-2\end{cases}}\)
Nếu x + y + z + 2 khác 0 => \(\frac{1}{2x+5}=\frac{1}{9}\) <=> 2x + 5 = 9 <=> 2x = 4 <=> x = 2
Với x = 2 => \(\frac{2+1}{2}=\frac{y-1}{3}=\frac{z+2}{4}\) => \(\hept{\begin{cases}\frac{y-1}{3}=\frac{3}{2}\\\frac{z+2}{4}=\frac{3}{2}\end{cases}}\)=> \(\hept{\begin{cases}y-1=\frac{9}{2}\\z+2=6\end{cases}}\)=> \(\hept{\begin{cases}y=\frac{11}{2}\\z=4\end{cases}}\)
Bài 1: Tìm x,y:
a) |x - 1| + |x + 3| = 4
b) |2x + 3| + |2x - 1| = \(\frac{8}{2\left(y-5\right)^2+2}\)
c) |x + 3| + |x + 1| = \(\frac{16}{\left|y-2\right|+\left|y+2\right|}\)
Bài 2: Tìm số nguyên x,y, biết:
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
b) \(x^2-2xy+y=0\)
a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)
\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)
b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)
c Tương tự b
2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)
\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)
Xét ước
Tìm x, y, z biết rằng:
a) \(\frac{x-y}{3}=\frac{x+y}{2}=\frac{1}{2}\)
b) \(\frac{2x-5}{y+1}=\frac{x-1}{3y}=\frac{1}{3}\)
c) \(\frac{2x+5}{5}=\frac{y+6}{4}\) và 5x - 3y = -64
Chỉ có câu c) là cho biết 5x-3y=-64 hả bn
tìm x,y,z biết: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) biết 2x+3y-z=50
Ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{16}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)
\(=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)
=> \(\hept{\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5.4=20\end{cases}}\)=> \(\hept{\begin{cases}x=11\\y=17\\z=23\end{cases}}\)
tìm x biết y =\(\frac{x^4-2x^3+1}{x^2+1}\)với x,y ϵ Z
y=\(\frac{x^4-2x^3+1}{x^2+1}\)=\(x^2\)-2x-1 + \(\frac{2x+2}{x^2+1}\)=\(x^2\)-2x-1 + \(\frac{2\left(x+1\right)}{x^2+1}\)
vì x và y đều nguyên nên \(x^2\)+1 phải là ước của x+1
vì x+1 <= \(x^2\)+1
nên ta có \(x^2\)+1 = x+1
=> x=0 hoặc x=1
với x=0 thì y=1
với x=1 thì y =0
vậy ta có (x;y)=(0;1); (1;0)
Tìm x,y thuộc Z biết
\(y=\frac{x^4-2x^3+1}{x^2+1}\)
Bài 1: / x - 2 / + / 3 - 2x / = 2x + 1. Tính x.
Bài 2: Tính x.y^2.t^3 + x^2.y^3.t^4 + x^3.y^4.t^5 + ... + x^2017.y^2018.y^2019 biết x = y = t = -1.
Bài 3: / x + 1 / + / x + 3 / + / x + 5 / + / x + 7 / = 8. Tìm x.
Bài 4: Tìm các cặp số ( x;y ) biết \(\frac{1+5y}{24}\)= \(\frac{1+7y}{7x}\)= \(\frac{1+9y}{2x}\).
Giúp mình giải hết và nhanh, giải rõ ràng nha.
Mình đang cần gấp.