Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vinh Nguyễn12345678910
Xem chi tiết
Minh Lê Trọng
17 tháng 9 2016 lúc 22:22

a) \(\text{x^2-8x+25 }\)

\(\text{= (x^2-8x+16)+9 }\)

\(\text{=(x-4)^2+9 lớn hơn hoặc bằng 0 với mọi x}\)

\(\Rightarrow\)Biểu thức này luôn dương

b) \(4y^2-12y+11\)

\(=\left(4y^2-12y+9\right)+3\)

\(=\left(2y-3\right)^2+3\)lớn hơn hoặc bằng 0 với mọi x

\(\Rightarrow\)Biểu thức này luôn dương

Nguyễn Minh Phương
17 tháng 9 2016 lúc 22:11

a) x2-8x+16+9

=(x-4)2+9 lớn hơn 0 

b) 4y2-12y+9+2

=(2y-3)2+2 lớn hơn 0

Cô đơn
19 tháng 10 2018 lúc 12:32

a) x^2-8x+25

= (x^2-8x+16)+9

=(x-4)^2+9 lớn hơn hoặc bằng 0 với mọi x

Biểu thức này luôn dương

b) 4y2−12y+11

=(4y2−12y+9)+3

=(2y−3)2+3lớn hơn hoặc bằng 0 với mọi x

Biểu thức này luôn dương

vuong trung kien
Xem chi tiết
Cô Hoàng Huyền
1 tháng 9 2017 lúc 8:54

Ta tách như sau: \(2x^2+8x+15=2\left(x^2+4x+4\right)+7=2\left(x+2\right)^2+7\)

Do \(\left(x+2\right)^2\ge0\Rightarrow2\left(x+2\right)^2+7\ge7>0\)

Vậy biểu thức trên luôn nhận giá trị dương với mọi giá trị của biến.

Nguyễn Hiền
Xem chi tiết
Nhật Minh Trần
19 tháng 8 2021 lúc 10:43

x^2-8x+20=(x^2-8x+16)+4

                 =(x-4)^2+4>0(vì (x-4)^2>=0)

4x^2-12x+11=4x^2-12x+9+2

                     =(2x-3)^2+2>0

x^2-x+1=x^2-x+1/4+3/4

             =(x-1/2)^2+3/4>0

x^2-2x+y^2+4y+6

=x^2-2x+1+y^2+4y+4+1

=(x-1)^2+(y+2)^2+1>0

Nguyễn Lê Phước Thịnh
19 tháng 8 2021 lúc 13:54

a: \(x^2-8x+20\)

\(=x^2-8x+16+4\)

\(=\left(x-4\right)^2+4>0\forall x\)

b: Ta có: \(4x^2-12x+11\)

\(=4x^2-12x+9+2\)

\(=\left(2x-3\right)^2+2>0\forall x\)

c: Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

d: Ta có: \(x^2-2x+y^2+4y+6\)

\(=x^2-2x+1+y^2+4y+4+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)

Lê Nguyễn Phương Anh
Xem chi tiết

\(P=16x^2+8x+2=\left(16x^2+8x+1\right)+1=\left(4x+1\right)^2+1\)

Do \(\left\{{}\begin{matrix}\left(4x+1\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)

\(\Rightarrow P=\left(4x+1\right)^2+1>0;\forall x\) (đpcm)

Toru
2 tháng 1 lúc 20:54

\(P=16x^2+8x+2\)

\(=\left(16x^2+8x+1\right)+1\)

\(=\left[\left(4x\right)^2+2\cdot4x\cdot1+1^2\right]+1\)

\(=\left(4x+1\right)^2+1\)

Ta thấy: \(\left(4x+1\right)^2\ge0\forall x\)

\(\Leftrightarrow P=\left(4x+1\right)^2+1\ge1>0\forall x\)

hay \(P\) luôn dương với mọi \(x\).

thoa nguyen
Xem chi tiết
๖²⁴ʱƘ-ƔℌŤ༉
18 tháng 8 2019 lúc 8:55

\(4x^2-8x+5=\left(2x\right)^2-2.2.2x+4+1=\left(2x-1\right)^2+1>0\)(luon duong)

Tran Thi Thu Hien
18 tháng 8 2019 lúc 9:05

\(4x^2-8x+5\)

\(=\left(2x\right)^2-2×2×2x+1+4\)

\(=\left(2x-1\right)^2+1\)

\(\Rightarrow\left(2x-1\right)^2+1>0\)

Vậy biểu thức trên luôn dương !!!

Lương Thế Tùng
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
6 tháng 7 2017 lúc 20:55

Ta có : C = 4x2 + 4y2 - 8x + 4y + 427

=> C = (4x2 - 8x + 4) + (4y2 + 4y + 1) + 422

=> C = (2x - 2)2 + (2y + 1)2 + 422

Mà \(\left(2x-2\right)^2\ge0\forall x\)

       \(\left(2y+1\right)^2\ge0\forall x\)

Nên C = (2x - 2)2 + (2y + 1)2 + 422  \(\ge422\forall x\)

Suy ra : C = (2x - 2)2 + (2y + 1)2 + 422 \(>0\forall x\)

Vậy C luôn luôn dương (đpcm)

ngocanh25
Xem chi tiết
Toru
11 tháng 10 2023 lúc 17:51

\(f,F=x^2+9y^2-8x+4y+27\) (sửa đề)

\(=\left(x^2-8x+16\right)+\left(9y^2+4y+\dfrac{4}{9}\right)+\dfrac{95}{9}\)

\(=\left(x^2-2\cdot x\cdot4+4^2\right)+\left[\left(3y\right)^2+2\cdot3y\cdot\dfrac{2}{3}+\left(\dfrac{2}{3}\right)^2\right]+\dfrac{95}{9}\)

\(=\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2+\dfrac{95}{9}\)

Ta thấy: \(\left(x-4\right)^2\ge0\forall x\)

             \(\left(3y+\dfrac{2}{3}\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2\ge0\forall x;y\)

\(\Rightarrow\left(x-4\right)^2+\left(3y+\dfrac{2}{3}\right)^2+\dfrac{95}{9}\ge\dfrac{95}{9}>0\forall x;y\)

hay \(F\) luôn dương với mọi \(x;y\).

\(Toru\)

Doãn Lê Thành
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 10 2021 lúc 22:02

a: \(x^2-5x+10\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)

b: \(2x^2+8x+15\)

\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x+2\right)^2+7>0\forall x\)