Chứng tỏ : nếu ( a - 5b ) chia hết cho 13 thì ( 10a + b ) chia hết cho 13
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
Cho a,b thuộc N
a) biết a+5b chia hết cho 7. Chứng tỏ rằng 10a+b cũng chia hết cho 7
b) biết 7a+2b chia hết cho 13. Chứng tỏ rằng 10a+b cũng chia hết cho 13
chứng minh rằng nếu a - 5b chia hết cho13 thì 10a +b chia hết cho 13 ?
ta có:5(10a+b)+(a-5b)=(50a+5b)+(a-5b)
=51a chia hết cho 13
\(\Rightarrow\)5(10a+b)+(a-5b) chia hết cho 13
mà a-5b chia hết cho13 nên 5(10a+b)chia hết cho 13
suy ra 10a+b chia hết cho 13
chứng minh rằng
a) nếu 20a + 11b chia hết cho 17 thì 83a + 38b chia hết cho17
b) nếu (2a +3b +4c) chia hết cho 7 thì ( 13a + 2b - 2c ) chia hết cho 7
c) nếu a +4b chia hết cho 13 thì 10a + b chia hết cho 13
d) nếu a + 2b chia hết cho 5 thì 3a - 4b chia hết cho 5
e) nếu a - 5b chia hết cho 17 thì 10a + b chia hết cho 17
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Ta có : 83a + 38b chia hết cho 17
Suy ra : 17a +83a + 38b + 17b chia hết cho 17
Suy ra 100a +55b chia hết cho 17
Suy ra 5×(20a +11b ) chia hết cho 17
Suy ra 20a +11b chia hết cho 17 ( do5 không chia hết cho 17)
Vậy 83a +38b chia hết cho 17 thì 20a +17b chia hết cho 17
Chứng tỏ rằng nếu a + 5b chia hết cho 7 thì 10+b cũng chia hết cho 7, nếu 10a +b chia hết cho 7 thì
a+5b cũng chia hết cho 7
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Chứng tỏ rằng: nếu a+4b chia hết cho 13 thì 10a + b chia hết cho 13 ( a, b thuộc N) điều ngược lại có đúng ko
10a+b\(⋮\)13
=> 4(10a+b)\(⋮\)13
=> 40a+4b\(⋮\)13
=> a+4b+39a\(⋮\)13
Mà 39a\(⋮\)13 nên a+4b\(⋮\)13
Vậy nếu 10a+b\(⋮\)13 thì a+4b\(⋮\)13
+) Chứng minh chiều xuối :
Cho a + 4b ⋮ 13 ; CMR : 10a + b ⋮ 13
Vì a + 4b ⋮ 13 => 10 . ( a + 4b ) ⋮ 13 => 10a + 40b ⋮ 13
Xét hiệu ( 10a + 40b ) - ( 10a + b ) = 39b ⋮ 13
\(\text{Vì }\hept{\begin{cases}10a+40b⋮13\\\left(10a+40b\right)-\left(10a+b\right)⋮13\end{cases}}\)
=> 10a + b ⋮ 13 (1)
+) Chứng minh chiều ngược :
Cho 10a + b ⋮ 13 ; CMR : a + 4b ⋮ 13
Vì 10a + b ⋮ 13 => 4 . ( 10b + a ) ⋮ 13 => 40a + 4b ⋮ 13
Xét hiệu : ( 40a + 4b ) - ( a + 4b ) = 39a ⋮ 13
\(\text{Vì }\hept{\begin{cases}40a + 4b ⋮ 13\\\left(40a+4b\right)-\left(a+4b\right)⋮13\end{cases}}\)
=> a + 4b ⋮ 13 (2)
Từ (1) và (2) => a + 4b ⋮ 13 <=> 10a + b ⋮ 13
a) Giải
Ta có:
a + 5b ⋮ 7 ⇒10(a + 5b) ⋮ 7 ⇒10a + 50b ⋮ 7
Vì 49 ⋮ 7 ⇒49b ⋮ 7
⇒10a + (50b - 49b) ⋮ 7
⇒10a + b ⋮ 7
Vậy 10a + b ⋮ 7
b) Giải
Ta có:
a + 4b ⋮ 13 ⇒10(a + 4b) ⋮ 13 ⇒10a + 40b ⋮ 13
VÌ 39 ⋮ 13 ⇒39b ⋮ 13
⇒10a + (40b - 39b) ⋮ 13
⇒10a + b ⋮ 13
Vậy 10a + b ⋮ 13
a) Chứng tỏ 2x + 3y chia hết cho 17 thì 9x + 5y chia hết chia hết cho 17
b) Cho biết a + 4b chia hết cho 13( a,b thuộc N) Chứng minh 10a + b chia hết 13