Tính tổng của n số hạng \(S_n=3+33+333+....\)
Tính tổng A = 3 + 33 + 333 + ... + 333....333 (số hạng cuối cùng có 50 chữ số 3)
bạn tick mình đi mình trả lời
bạn neymar đầu tròn trả lời đúng mình mới tích nha
Bài toán yêu cầu bạn tính tổng của một cấp số nhân có công bội là 3 và số hạng đầu tiên là 3. Công thức tính tổng của một cấp số nhân là:
$$S_n = \frac{a_1(1-q^n)}{1-q}$$
Trong đó, $a_1$ là số hạng đầu tiên, $q$ là công bội, và $n$ là số hạng. Áp dụng công thức này vào bài toán của bạn, ta có:
$$A = 3^1 + 3^2 + 3^3 + ....... + 3^50 = \frac{3(1-3^{50})}{1-3}$$
Để tính giá trị của A, bạn có thể sử dụng máy tính hoặc các trang web chuyên về toán học. Mình đã tìm thấy một trang web có thể giải quyết bài toán này cho bạn. Theo trang web đó, kết quả của A là:
$$A \approx 7.178979876e23$$
Đây là một số rất lớn, gần bằng 718 nghìn tỷ tỷ tỷ. Hy vọng bạn đã hiểu cách giải bài toán này. Nếu bạn có thắc mắc gì khác, xin vui lòng liên hệ với mình. Mình rất vui khi được giúp đỡ bạn
Cho dãy số (Un) có tổng n số hạng đầu là \(S_n=3^n-1\)
Tính \(S=2u_1+3u_2+4u_3+...+2011.u_{2010}\)
\(S_n=3^n-1\)
\(S=2011\left(u_1+...+u_{2010}\right)-\left(u_1+...+u_{2009}\right)-\left(u_1+...+u_{2008}\right)-...-u_1\)
\(=2011S_{2010}-\left(S_{2009}+S_{2008}+...+S_1\right)\)
\(=2011\left(3^{2010}-1\right)-\left(3^{2009}-1+3^{2008}-1+...+3^1-1\right)\)
\(=2011\left(3^{2010}-1\right)-\left(3.\dfrac{3^{2009}-1}{3-1}-2009\right)\)
\(=...\)
cho dãy 3; 33; 333; 3333; 33333;... Nếu lấy tổng của 50 số hạng đầu tiên của dãy trên thì chữ số hàng chục của tổng bằng bao nhieu?
Cho cấp số cộng \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1}\) và công sai d
Để tính tổng của n số hạng đầu
\({S_n} = {u_1} + {u_2} + \ldots + {u_{n - 1}} + {u_n}\)
Hãy lần lượt thực hiện các yêu cầu sau:
a) Biểu diễn mỗi số hạng trong tổng \({S_n}\) theo số hạng đầu \({u_n}\) và công sai d
b) Viết \({S_n}\) theo thứ tự ngược lại: \({S_n} = {u_n} + {u_{n - 1}} + \ldots + {u_2} + {u_1}\) và sử dụng kết quả ở phần a) để biểu diễn mỗi số hạng trong tổng này theo \({u_1}\) và d
c) Cộng từng vế hai đẳng thức nhận được ở a), b) để tính \({S_n}\)theo \({u_1}\) và d
a) \({u_2} = {u_1} + d\)
\({u_3} = {u_1} + 2d\)
…
\({u_{n - 1}} = {u_1} + \left( {n - 2} \right)d\)
\({u_n} = {u_1} + \left( {n - 1} \right)d\)
\({S_n} = {u_1} + {u_1} + 2d + \ldots + {u_1} + \left( {n - 2} \right)d + {u_1} + \left( {n - 1} \right)d\)
b) \({S_n} = {u_n} + {u_{n - 1}} + \ldots + {u_2} + {u_1} = {u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d + \ldots + {u_1} + d + {u_1}\)
c) \(2{S_n} = \left( {{u_1} + {u_1} + d + \ldots + {u_1} + \left( {n - 1} \right)d} \right) + \left( {{u_1} + \left( {n - 1} \right)d + {u_1} + \left( {n - 2} \right)d + \ldots + {u_1}} \right)\).
\( \Rightarrow 2{S_n} = n.\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)
\( \Rightarrow {S_n} = \frac{n}{2}\left( {2{u_1} + \left( {n - 1} \right)d} \right)\)
Cho cấp số nhân \(\left( {{u_n}} \right)\) với số hạng đầu \({u_1} = a\) và công bội \(q \ne 1\)
Để tính tổng của n số hạng đầu\({S_n} = {u_1} + {u_2} + \ldots + {u_{n - 1}} + {u_n}\)
Thực hiện lần lượt các yêu cầu sau:
a) Biểu diễn mỗi số hạng trong tổng trên theo \({u_1}\) và q để được biểu thức tính tổng \({S_n}\) chỉ chứa \({u_1}\) và q.
b) Từ kết quả phần a, nhân cả hai vế với q để được biểu thức tính tích \(q.{S_n}\) chỉ chứa \({u_1}\) và \(q\).
c) Trừ từng vế hai đẳng thức nhận được ở cả a và b và giản ước các số hạng đồng dạng để tính \(\left( {1 - q} \right){S_n}\) theo \({u_1}\)và \(q\). Từ đó suy ra công thức tính \({S_n}\).
a) \({u_2} = {u_1}.q\)
\({u_3} = {u_1}.{q^2}\)
…
\({u_{n - 1}} = {u_1}.{q^{n - 2}}\)
\({u_n} = {u_1}.{q^{n - 1}}\)
\({S_n} = {u_1} + {u_1}q + \ldots + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}\)
b) \(q{S_n} = q{u_1} + {u_1}{q^2} + \ldots + {u_1}{q^{n - 1}} + {u_1}{q^n}\)
c) \({S_n} - q{S_n} = \left( {{u_1} + {u_1}q + \ldots + {u_1}{q^{n - 2}} + {u_1}{q^{n - 1}}} \right) - (q{u_1} + {u_1}{q^2} + \ldots + {u_1}{q^{n - 1}} + {u_1}{q^n})\).
\(\begin{array}{l} \Leftrightarrow \left( {1 - q} \right){S_n} = {u_1} - {u_1}{q^n} = {u_1}\left( {1 - {q^n}} \right)\\ \Rightarrow {S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\end{array}\)
Viết 3 số hạng đầu của một cấp số cộng, biết rằng tổng n số hạng đầu tiên của cấp số này là :
\(S_n=4n^2-3n\)
Nếu cấp số nhân có công bội q = 1 thì tổng n số hạng đầu \(S_n\) của nó bằng bao nhiêu?
Nếu cấp số nhân có công bội q = 1 thì cấp số nhân là \(u_1, u_1, ..., u_1,...\) Khi đó
\({S_n} = u_1 + u_1 + ... + u_1 = n . u_1\) (tổng của n số hạng u_1).
Tổng n số hạng đầu tiên của một cấp số cộng là S_n = \frac{3n^2 + 13n}{2}Sn=23n2+13n với n \in \mathbb{N}^*n∈N∗. Số hạng tổng quát của cấp số cộng là