Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Minh Nghĩa
Xem chi tiết
Trương Minh Nghĩa
8 tháng 12 2021 lúc 16:15

Đểu thật

Khách vãng lai đã xóa

mk ko ghõ đc

Khách vãng lai đã xóa
Trương Minh Nghĩa
8 tháng 12 2021 lúc 16:16

Chắc do lỗi rồi

Câu trả lời của bạn đã được quản trị viện duyệt rồi nhé

HT

Khách vãng lai đã xóa
Tiến Nguyễn Minh
Xem chi tiết
Kiệt Nguyễn
29 tháng 10 2019 lúc 21:08

Ta có: \(\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\sqrt{\left(a+b\right)^2}\ge\sqrt{4ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)(Vì BĐT Cauchy chỉ áp dụng cho 2 số dương)

\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

Khách vãng lai đã xóa
Tiến Nguyễn Minh
29 tháng 10 2019 lúc 21:09

Chứng minh áp dụng với n số không âm đi

Khách vãng lai đã xóa
Ánh Dương
Xem chi tiết
Nguyễn Ngọc Lộc
8 tháng 5 2021 lúc 16:28

Ta có : \(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2+b^2+2ab\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

Có : \(a,b\ge0\)

\(\Rightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\dfrac{a+b}{2}\ge\sqrt{ab}\) ( đpcm )

Vậy ...

Thiện Phan Minh
Xem chi tiết
nguyenminhphuong
11 tháng 2 2021 lúc 17:55

có ?????????

Khách vãng lai đã xóa
T.Anh 2K7(siêu quậy)(тoá...
11 tháng 2 2021 lúc 18:11

Ta có BĐT cô si:\(a+b\ge2\sqrt{ab}\)(1)

Mặt khác a,b là các số âm nên a+b<0 mà \(2\sqrt{ab}>0\)

\(\Rightarrow a+b< 2\sqrt{ab}\left(2\right)\)

Từ (1) và (2) suy ra vô lý

vậy...............

Khách vãng lai đã xóa
Phùng Minh Phúc
Xem chi tiết
Akai Haruma
23 tháng 1 2022 lúc 16:40

Lời giải:

Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:

$a+b\geq 2\sqrt{ab}$

$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$

$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$

Ta có đpcm 

Dấu "=" xảy ra khi $a=b$

Rhider
Xem chi tiết
camcon
Xem chi tiết
Lê Đình Hiếu
23 tháng 8 2021 lúc 22:36

bất đẳng thức cosi là khái niệm dùng để chỉ bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm. Trong đó, trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng

Lê Đình Hiếu
23 tháng 8 2021 lúc 22:37

Hệ quả 1: Nếu tổng hai số dương không đổi thì tích của chúng lớn nhất khi hai số đó bằng nhau                                                                     Hệ quả 2: Nếu tích hai số dương không đổi thì tổng của hai số này nhỏ nhất khi hai số đó bằng nhau

Lê Đình Hiếu
23 tháng 8 2021 lúc 22:46

a) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge 4

Áp dụng bđt côsi ta có:

\frac{a}{b}+\frac{b}{a}\ge 2\sqrt{\frac{a}{b}.\frac{b}{a}}=2,\,\,\frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}}\ge 2\sqrt{\frac{a}{{{b}^{2}}}.\frac{b}{{{a}^{2}}}}=\frac{2}{\sqrt{ab}}

\(\Rightarrow\) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge \frac{4}{\sqrt{ab}} (1)

\(\Leftrightarrow\) 2={{a}^{2}}+{{b}^{2}}\ge 2\sqrt{{{a}^{2}}{{b}^{2}}}=2ab\Rightarrow ab\le 1 (1)

Từ (1) và (2) \(\Rightarrow\) \left( \frac{a}{b}+\frac{b}{a} \right)\left( \frac{a}{{{b}^{2}}}+\frac{b}{{{a}^{2}}} \right)\ge 4 (ĐPCM)

Đẳng thức xảy ra \(\Leftrightarrow\) \displaystyle a=b=1.

Phùng Minh Phúc
Xem chi tiết
ILoveMath
22 tháng 1 2022 lúc 21:41

Coi như a, b, c là số dương

Áp dụng BĐT Cô-si ta có:

\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)

Dấu "=" xảy ra ...

\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)

Dấu "=" xảy ra ...

\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)

Dấu "=" xảy ra ...

Từ (1), (2), (3) ta có:

\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Dấu "=" xảy ra ...

Vậy ...

ILoveMath
22 tháng 1 2022 lúc 21:35

a, b, c có phải là số dương không bạn, nếu không thì làm sao dùng BĐT Cô-si được

Flower in Tree
Xem chi tiết
Nguyễn Nhật Đạt
22 tháng 12 2021 lúc 11:23

chịu

thôi

Khách vãng lai đã xóa
Hà Minh Đức
22 tháng 12 2021 lúc 11:27

Chịu

tui lớp 4. Ông lớp 9. Giải bằng cái nịt. Search google rồi còn không làm được. Trời ơi!!! 🙄

Khách vãng lai đã xóa
Nguyễn Tr  Phương	Thảo
22 tháng 12 2021 lúc 11:30

ko phải lớp 9 đâu ban à lớp 12 đó

Khách vãng lai đã xóa