Trong hình 1.4, hãy chỉ ra các vec tơ cùng phương, cùng hướng, ngược hướng và các vectơ bằng nhau.
Trong hình 1.4, hãy chỉ ra các vectơ cùng phương, cùng hướng, ngược hướng và các vectơ bằng nhau.
– Các vectơ cùng phương:
a→ và b→ cùng phương
u→ và v→ cùng phương
x→, y→, w→ và z→ cùng phương.
– Các vectơ cùng hướng:
a→ và b→ cùng hướng
x→, y→ và z→ cùng hướng
– Các vectơ ngược hướng:
u→ và v→ ngược hướng
w→ ngược hướng với các vec tơ x→, y→ và z→
– Các vectơ bằng nhau: x→ = y→
Trong hình 1.4 hãy chỉ ra các vectơ cùng phương, cùng hướng, ngược hướng và các vectơ bằng nhau :
- Các vectơ cùng phương: và ; , , và ; và .
- Các vectơ cùng hướng: và ; , ,
- Các vectơ ngược hướng: và ; và ; và ; và .
- Các vectơ bằng nhau: = .
Hãy chỉ ra các cặp vectơ cùng hướng, ngược hướng, bằng nhau trong hình 17.
+ Các cặp vectơ cùng hướng là: \(\overrightarrow a \) và \(\overrightarrow b \); \(\overrightarrow u \) và \(\overrightarrow v \)
+ Các cặp vectơ ngược hướng là: \(\overrightarrow x \) và \(\overrightarrow y \)
+ Các cặp vectơ bằng nhau là: \(\overrightarrow u \) và \(\overrightarrow v \)
Xét các vectơ cùng phương trong Hình 4.7. Hai vectơ \(\overrightarrow a \) và \(\overrightarrow {AB} \)được gọi là cùng hướng, còn hai vectơ \(\overrightarrow a \) và \(\overrightarrow x \) được gọi là ngược hướng. Hãy chỉ ra các vectơ cùng hướng với vectơ \(\overrightarrow a \) và các vectơ ngược hướng với vectơ \(\overrightarrow a \).
Hai vectơ \(\overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng: có giá song song và cùng hướng với nhau.
Hai vectơ \(\overrightarrow a \) và \(\overrightarrow x \) ngược hướng: có giá song song và ngược hướng với nhau.
Vectơ \(\overrightarrow z \) có giá song song với giá của vectơ \(\overrightarrow a \), ngược hướng với vectơ \(\overrightarrow a \) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow z \) ngược hướng với nhau.
Vectơ \(\overrightarrow y \) có giá song song với giá của vectơ \(\overrightarrow a \), cùng hướng với vectơ \(\overrightarrow a \) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow y \) cùng hướng với nhau.
Vectơ \(\overrightarrow b \) có giá không song song với giá của vectơ \(\overrightarrow a \) nên hai vectơ \(\overrightarrow a \) và \(\overrightarrow b \) không cùng phương với nhuau. Do vậy không xét chúng cùng hướng hay ngược hướng với nhau.
Cho ba vectơ a→, b→, c→ đều khác vectơ . Các khẳng định sau đúng hay sai?
a) Nếu hai vec tơ a→, b→ cùng phương với c→ thì a→ và b→ cùng phương.
b) Nếu a→, b→ cùng ngược hướng với c→ thì a→ và b→ cùng hướng.
a) Gọi Δ1, Δ2, Δ3 lần lượt là giá của ba vectơ a→, b→, c→
+ Vectơ a cùng phương với vectơ c ⇒ Δ1 //≡ Δ3
+ Vectơ b cùng phương với vectơ c ⇒ Δ2 //≡ Δ3
⇒ Δ1 //≡ Δ2
⇒ Vectơ a→ cùng phương với b→ (theo định nghĩa).
b) a→, b→ cùng ngược hướng với c→
⇒ a→, b→ đều cùng phương với c→
⇒ a→ và b→ cùng phương.
⇒ a→ và b→ chỉ có thể cùng hướng hoặc ngược hướng.
Mà a→ và b→ đều ngược hướng với c→ nên a→ và b→ cùng hướng.
Trong Hình 4.12, hãy chỉ ra các vecto cùng phương, các cặp vecto ngược hướng và các cặp vecto bằng nhau.
Dễ thấy giá của \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) song song với nhau.
Các vecto cùng phương là: \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)
Trong đó cặp vecto cùng hướng là \(\overrightarrow a ,\overrightarrow c \).
Cặp vecto ngược hướng là: \(\overrightarrow a ,\overrightarrow b \) và \(\overrightarrow b ,\overrightarrow c \).
Cặp vecto bằng nhau là: \(\overrightarrow a ,\overrightarrow c \)
Tìm các lực cùng hướng và ngược hướng trong số các lực đẩy được biểu diễn bằng các vectơ trong hình 18.
Nhận xét: giá của 4 lực đều song song hoặc trùng nhau, do đó 4 vecto là cùng phương.
Vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) có chiều từ phải sang trái còn vectơ \(\overrightarrow d \) có chiều từ trái sang phải
Vậy các vectơ (hay lực) cùng hướng với nhau là vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \).
Các vectơ (lực) \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) ngược hướng với vectơ \(\overrightarrow d \).
Quan sát Hình 8 và gọi tên các vectơ:
a) Cùng phương với vectơ \(\overrightarrow x \);
b) Cùng hướng với vectơ \(\overrightarrow a \) ;
Ngược hướng với vectơ \(\overrightarrow u \).
Quan sát Hình 8 và gọi tên các vectơ:
a) Cùng phương với vectơ \(\overrightarrow x \);
b) Cùng hướng với vectơ \(\overrightarrow a \) ;
Ngược hướng với vectơ \(\overrightarrow u \).
a) Ta có:
Giá của vectơ \(\overrightarrow {\rm{w}} \) trùng với giá của \(\overrightarrow x \)
Giá của vectơ \(\overrightarrow y \), \(\overrightarrow z \)song song với giá của \(\overrightarrow x \)
Suy ra các vectơ cùng phương với vectơ \(\overrightarrow x \) là \(\overrightarrow {\rm{w}} \), \(\overrightarrow y \)và \(\overrightarrow z \)
b) Ta có:
Vectơ \(\overrightarrow b \) có giá song song với vectơ \(\overrightarrow a \)và có cùng hướng từ trên xuống với vectơ \(\overrightarrow a \)nên vectơ \(\overrightarrow b \) cùng hướng với vectơ \(\overrightarrow a \)
c) Ta có:
Vectơ \(\overrightarrow v \) có giá song song với vectơ \(\overrightarrow u \)và ngược hướng từ dưới lên trên so với vectơ \(\overrightarrow u \)nên vectơ \(\overrightarrow v \) ngược hướng với vectơ \(\overrightarrow u \)