Cho phương trình \(x^2-\left(2m+1\right)x-m^2-m=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1< x_2\). Tìm mọi giá trị m để : \(S=x_1^2-x_2=-1\).
Cho phương trình \(x^2-\left(2m+1\right)x-m^2-m=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1< x_2\). Tìm mọi giá trị m để : \(S=x_1^2-x_2=-1\).
Cách ngắn ngọn nhất:
x2−2(m+1)x+4m=0(1)�2−2(�+1)�+4�=0(1)
⇔x2−2x−2mx+4m=0⇔�2−2�−2��+4�=0
⇔x(x−2)−2m(x−2)=0⇔�(�−2)−2�(�−2)=0
⇔(x−2)(x−2m)=0⇔(�−2)(�−2�)=0
⇔[x=2x=2m⇔[�=2�=2�
Phương trình (1) có 2 nghiệm là x=2;x=2m�=2;�=2�. Mặt khác phương trình (1) cũng có 2 nghiệm là x1, x2 nên ta chia làm 2 trường hợp:
TH1: x1=2;x2=2m�1=2;�2=2�.
Có 2x1−x2=−2⇒2.2−2m=−2⇔m=32�1−�2=−2⇒2.2−2�=−2⇔�=3
TH2: x1=2m;x2=2�1=2�;�2=2
Có 2x1−x2=−2⇒2.(2m)−2=−2⇔m=02�1−�2=−2⇒2.(2�)−2=−2⇔�=0
Vậy m=0 hay m=3
Cho phương trình : \(x^2-5x+m=0\) ( m là tham số )
a ) giải phương trình khi m = 6
b ) Tìm m để phương trình trên có hai nghiệm \(x_1\) , \(x_2\) thỏa mãn \(|x_1-x_2|=3\)
a)
\(m=6\)
\(\Rightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
b)
\(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)
\(\Leftrightarrow x_1^2=2x_1x_2+x^2_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)
Mà \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1-x_2=m\end{matrix}\right.\)
\(\Rightarrow25-4m=9\)
\(\Leftrightarrow4m=16\)
\(\Leftrightarrow m=4\)
Cho phương trình: \(x^2\)– 5x + m = 0 (m là tham số).
a) Giải phương trình trên khi m = 6.
b) Tìm m để phương trình trên có hai nghiệm \(x_1,x_2\)thỏa mãn :\(\left|x_1-x_2\right|=3\)
a, - Thay m = 6 vào phương trình ta được : \(x^2-5x+6=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy ...
b, - Xét phương trình trên có : \(\Delta=b^2-4ac=25-4m\)
- Để phương trình có 2 nghiệm phân biệt <=> \(m< \dfrac{25}{4}\)
- Theo viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)
- Ta có : \(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow x^2_1+x^2_2-2\left|x_1x_2\right|=\left(x_1+x_2\right)^2-2\left(x_1x_2+\left|x_1x_2\right|\right)=9\)
\(\Leftrightarrow m+\left|m\right|=8\)
\(\Leftrightarrow2m=8\)
\(\Leftrightarrow m=4\)
Vậy ...
Cho pt \(x^{^{ }2}-8x+m=0\). Tìm các giá trị của m để pt có hai nghiệm \(x_1,x_2\) thỏa mãn
a) \(2x_1+3x_2=6\) b) \(x_1=7x_2\) c) \(x_1-x_2=2\)
Moij người giúp mình với ạ mình đang cần gấp ạ
Cho phương trình \(x^2-2x+m-1=0\) (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm \(x_1,x_2\) thỏa mãn hệ thức \(x_1^4-x_1^3=x_2^4-x_2^3\)
\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2-m\ge0\Leftrightarrow m\le2\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)
\(x^4_1-x^3_1=x^4_2-x^3_2\\ \Leftrightarrow\left(x^4_1-x_2^4\right)-\left(x^3_1+x^3_2\right)=0\\ \Leftrightarrow\left(x^2_1-x^2_2\right)\left(x^2_1+x^2_2\right)-\left(x_1+x_2\right)\left(x^2_1+x^2_2-x_1x_2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=0\\ \Leftrightarrow\left(m-1\right).2\left[2^2-2\left(m-1\right)\right]-2\left[2^2-3\left(m-1\right)\right]=0\)
\(\Leftrightarrow\left(2m-2\right)\left(4-2m+2\right)-2\left(4-3m+3\right)=0\)
\(\Leftrightarrow\left(2m-2\right)\left(6-2m\right)-2\left(7-3m\right)=0\)
\(\Leftrightarrow...\)
\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2-m\ge0\Leftrightarrow m\le2\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)
\(x^4_1-x^3_1=x^4_2-x^3_2\\ \Leftrightarrow\left(x^4_1-x_2^4\right)-\left(x^3_1-x^3_2\right)=0\\ \Leftrightarrow\left(x^2_1-x^2_2\right)\left(x^2_1+x^2_2\right)-\left(x_1-x_2\right)\left(x^2_1+x^2_2+x_1x_2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]=0\)
\(\Leftrightarrow\left(x_1-x_2\right).2\left(4-2m+2\right)-\left(x_1-x_2\right)\left(4-m+1\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right).2\left(6-2m\right)-\left(x_1-x_2\right)\left(5-m\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(12-4m-5+m\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(7-3m\right)=0\)
\(\Leftrightarrow...\)
Chứng minh rằng với các số thực dương \(x_1,x_2,...,x_n\)ta có:
\(\frac{x_1}{x_2+x_n}+\frac{x_2}{x_3+x_1}+\frac{x_3}{x_2+x_4}+...+\frac{x_n}{x_{n-1}+x_1}\ge2,\forall n\ge4\).
P/s: chứng minh bằng quy nạp
Với \(n=4\) bđt \(\Leftrightarrow\)\(\frac{x_1}{x_4+x_2}+\frac{x_2}{x_1+x_3}+\frac{x_3}{x_2+x_4}+\frac{x_4}{x_3+x_1}\ge2\)
\(\Leftrightarrow\)\(\frac{x_1^2}{x_4x_1+x_1x_2}+\frac{x_2^2}{x_1x_2+x_2x_3}+\frac{x_3^2}{x_2x_3+x_3x_4}+\frac{x_4^2}{x_3x_4+x_4x_1}\ge2\) (1)
\(VT_{\left(1\right)}\ge\frac{\left(x_1+x_2+x_3+x_4\right)^2}{2\left(x_1x_2+x_2x_3+x_3x_4+x_4x_1\right)}\ge\frac{\left(x_1+x_2+x_3+x_4\right)^2}{2.\frac{\left(x_1+x_2+x_3+x_4\right)^2}{4}}=2\)
Giả sử bđt đúng đến n=k hay \(\frac{x_1}{x_k+x_2}+\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}+\frac{x_k}{x_{k-1}+x_1}\ge2\)
\(\Leftrightarrow\)\(\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}\ge2-\frac{x_1}{x_k+x_2}-\frac{x_k}{x_{k-1}+x_1}\)
Với n=k+1, cần cm \(\frac{x_1}{x_{k+1}+x_2}+\frac{x_2}{x_1+x_3}+...+\frac{x_{k-1}}{x_{k-2}+x_k}+\frac{x_k}{x_{k-1}+x_{k+1}}+\frac{x_{k+1}}{x_k+x_1}\ge2\)
hay \(\frac{x_1}{x_{k+1}+x_2}-\frac{x_1}{x_k+x_2}+\frac{x_k}{x_{k-1}+x_{k+1}}-\frac{x_k}{x_{k-1}+x_1}+\frac{x_{k+1}}{x_k+x_1}\ge0\) (2)
giả sử \(x_k=max\left\{a_1;a_2;...;a_{k+1}\right\}\)
\(VT_{\left(2\right)}=\frac{x_1\left(x_k-x_{k+1}\right)}{\left(x_k+x_2\right)\left(x_{k+1}+x_2\right)}+\frac{x_k\left(x_1-x_{k+1}\right)}{\left(x_{k-1}+x_1\right)\left(x_{k-1}+x_{k+1}\right)}+\frac{x_{k+1}}{x_k+x_1}>0\)
nhầm, chỗ giả sử là \(x_{k+1}=min\left\{x_1;x_2;...;x_{k+1}\right\}\)
Tìm tất cả các giá trị của tham số m để phương trình x^2+2x+m=0 có hai nghiệm x1, x2 thỏa mãn \(\dfrac{x_1^2-3_{x_1}+m}{x_2}+\dfrac{x_2^2-3_{x_2}+m}{x_1}\le2\)
\(\text{Δ}=2^2-4\cdot1\cdot m=4-4m\)
Để phương trình có hai nghiệm thì Δ>=0
=>-4m+4>=0
=>-4m>=-4
=>m<=1(1)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)
\(\dfrac{x_1^2-3x_1+m}{x_2}+\dfrac{x_2^2-3x_2+m}{x_1}< =2\)
=>\(\dfrac{x_1^3+x_2^3-3\left(x_1^2+x_2^2\right)+m\left(x_1+x_2\right)}{x_1x_2}< =2\)
=>\(\dfrac{\left(x_1+x_2\right)^3-3x_1x_2-3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+m\left(x_1+x_2\right)}{x_1x_2}< =2\)
=>\(\dfrac{\left(-2\right)^3-3\cdot m-3\left[\left(-2\right)^2-2m\right]+m\cdot\left(-2\right)}{m}< =2\)
=>\(\dfrac{-8-3m-3\left(4-2m\right)-2m}{m}-2< =0\)
=>\(\dfrac{-5m-8-12+6m}{m}-2< =0\)
=>\(\dfrac{m-20-2m}{m}< =0\)
=>\(\dfrac{-m-20}{m}< =0\)
=>\(\dfrac{m+20}{m}>=0\)
=>\(\left[{}\begin{matrix}m>0\\m< =-20\end{matrix}\right.\)
Kết hợp (1), ta được: \(\left[{}\begin{matrix}0< m< =1\\m< =-20\end{matrix}\right.\)
Cho hàm số y=\(-x^2\) có đồ thị là (P) và hàm số y=x-2 có đồ thị là (d).
Tìm m sao cho đường thẳng (d'): y=mx-4 (với m là tham số thực) và (P) cắt nhau tại hai điểm có hoành độ \(x_1\)\(x_2\) thỏa mãn: (\(x_1\)-\(x_2\))2 -\(x_1\)-\(x_2\)=18
- Phương trình hoành độ giao điểm của (P) và (d'):
\(-x^2=mx-4\Leftrightarrow x^2+mx-4=0\left(1\right)\)
\(a=1;b=m;c=-4\)
\(\Delta=b^2-4ac=m^2-4.\left(1\right).\left(-4\right)=m^2+16>0\)
Vì \(\Delta>0\) nên (P) và (d) luôn cắt nhau tại hai điểm phân biệt có hoành độ x1, x2.
Theo định lí Viete cho phương trình (1) ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{m}{1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{-4}{1}=-4\end{matrix}\right.\)
Ta có: \(\left(x_1-x_2\right)^2-\left(x_1+x_2\right)=18\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=18\)
\(\Rightarrow\left(-m\right)^2-2.\left(-4\right)-\left(-m\right)-18=0\)
\(\Leftrightarrow m^2+m-12=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-3\end{matrix}\right.\)
Vậy m=4 hay m=-3.
lập phương trình bậc hai ẩn x có hai nghiệm \(x_1,x_2\) thỏa mãn các điều kiện
\(x_1+x_2=1\) và \(\frac{x_1}{x_1-1}+\frac{x_2}{x_2-1}=\frac{13}{6}\)
\(\frac{x_1\left(x_2-1\right)+x_2\left(x_1-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}=\frac{13}{6}\Leftrightarrow\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}=\frac{13}{6}\)
\(\Leftrightarrow\frac{2x_1x_2-1}{x_1x_2}=\frac{13}{6}\Leftrightarrow12x_1x_2-6=13x_1x_2\Rightarrow x_1x_2=-6\)
Theo Viet đảo, \(x_1;x_2\) là nghiệm:
\(x^2-x-6=0\)
Cho phương trình: \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a) CMR phương trình luôn có hai nghiệm phân biệt với mọi m
b) Xác định m để phương trình có hai nghiệm \(x_1,x_2\) thoả mãn \(1< x_1< x_2< 6\)
a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.
Câu b mình nhìn không rõ đề, bạn sửa lại nhé.