tìm x,y biết ( 2x - 8 ) mũ 2000 + ( 3y + 4 ) mũ 2022 bé hơn hoặc bằng 0
Tìm x,y biết:
(2x-5)^2000+(3y+4)^2002 bé hơn hoặc bằng 0
(2x - 5)2000 + (3y + 4)2002
ta có: (2x - 5)2000 \(\ge\) 0 ; (3y + 4)2002 \(\ge\) 0
=> (2x - 5)2000 + (3y + 4)2002 \(\ge\) 0
Dấu "=" xảy ra khi 2x - 5 = 0 và 3y + 4 = 0
=> 2x = 5 và 3y = -4
=> x = 2,5 và y = \(\frac{-4}{3}\)
bé hơn mà có phải lớn hơn 0 đâu ?
Do(2x-5)^2020 lớn hơn hoặc =0
(3y+4)^2002 lớn hơn hoặc =0
suy ra (2x-5)^2020+(3y+4)^2002 lớn hơn hoặc =0
dấu ''='' xảy ra khi
2x-5=0 2x=5 x=5/2
3y+4=0 3y=-4 y=-4/3
Tìm x,y biết:(2x-5)^2000+(3y+4)^2002 nhỏ hơn hoặc bằng 0
tìm x ,y bt (/ là giá trị tuyệt đối nhé)
a,/x-3/+/x+5/-8=0
b,/2x+1/+*2x-5/-4=0
c,/x-3/+/3x+4/+/2x-1/=8
d,/x-3y/ mũ 11 +(y+4) mũ 12=0
e,(x+y) mũ 2016 + 2017/y-1/ mũ 3 = 0
d,/x-y-5/+2015(y-3) mũ 2016=0
f,(x-1) mũ 2 + (y+3) mũ 4 = 0
g, 2(x-5) mũ 6 + 5[/2y-7/ mũ 5]=0
ch,/x=3y-1/+(3y-2) mũ 2016 =0
Nếu dc mọi người có thể chỉ rõ cho em cách giả dc ko ạ,lần sau có j em còn bt làm.Em cảm ơn ạ
( 3x - 5 ) + ( 2y + 5 ) mũ 2008 + ( 4z - 3 ) mũ 20 nhỏ hơn hoặc bằng 0
( 2x -1 ) + ( y - 3 ) mũ 8 + ( z - 5 ) mũ 20 = 0
\(\left(2x-1\right)^2+\left(y-3\right)^8+\left(z-5\right)^{20}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-3=0\\z-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3\\z=5\end{matrix}\right.\)
8 x 16 bé hơn hoặc bằng 2 mũ n bé hơn hoặc bằng 4
Bài này tìm j vậy cậu
đúng sai rồi để tớ đánh lai đề
1)Tìm n thuộc Z biết:3^-2*3^4*3^n=3^7
2)Tìm x thuộc Q biết:(7x+2)^-1=3^-2
3)Tìm x,y thuộc Z biết:(2x-5)^2000+(3y+4)^2002 bé hơn hoặc bằng 0.
Tìm x, y biết:
(x-5)/mũ 2018+(y+1)/mũ 2018 lớn hơn hoặc bằng 0
(x-5)^2018>=0
y+1)^2018>=0
=>(x-5)^2018+(y+1)^2018>=0
dấu = xảy ra <=>x=5;y=-1
Tìm x,y:
(x+1) mũ 2020 + (2- 3y) mũ 2022 =0
\(\left(x+1\right)^{2020}+\left(2-3y\right)^{2022}=0\)
Vì \(\hept{\begin{cases}\left(x+1\right)^{2020}\ge0\forall x\\\left(2-3y\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^{2020}+\left(2-3y\right)^{2022}\ge0\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x+1\right)^{2020}=0\\\left(2-3y\right)^{2022}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\3y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=\frac{2}{3}\end{cases}}\)
( x + 1 )2020 + ( 2 - 3y )2022 = 0
Ta có \(\hept{\begin{cases}\left(x+1\right)^{2020}\ge0\forall x\\\left(2-3y\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^{2020}+\left(2-3y\right)^{2022}\ge0\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+1=0\\2-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=\frac{2}{3}\end{cases}}\)
Vậy x = -1 ; y = 2/3
A) Tìm x, y biết (2x-5)2000+(3y+4)2002 bé hơn hoặc bằng 0. B) Tìm các số nguyên dương m, n sao cho 2m-2n=256
Các bạn trả lời cho mình đi mình sẽ k cho bạn
\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\) (1)
có : \(\left(2x-5\right)^{2000}\ge0\forall x\)
\(\left(3y+4\right)^{2002}\ge0\forall x\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\) (2)
\(\left(1\right)\left(2\right)\Rightarrow\left(2x-5\right)^{2000}+\left(3y-4\right)^{2002}=0\)
\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)