tìm giá trị lớn nhất và nhỏ nhất của hàm số sau
\(y=cosx+cos2x\)
1/ tìm TXĐ chủa hàm số y = căn 1 - cosx /2 + sinx.
2/ tìm tập giá trị của hàm số y = 2-cos2x.
3/ Tìm giá trị lớn nhất và nhỏ nhất của các hàm số sau :
a) y=1 + 2sinx b)y=1 - 2cos^2x
4/ Tìm giá trị nhỏ nhất của hàm số y=tan^2x - 2tanx +3.
1. Không dịch được đề
2.
\(-1\le cos2x\le1\Rightarrow1\le y\le3\)
3.
a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
b.
\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)
\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)
\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
4.
\(y=\left(tanx-1\right)^2+2\ge2\)
\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
Tìm tổng giá trị lớn nhất và nhỏ nhất của hàm số y = cos x + 2 - cos 2 x
A. 3
B. 2
C. 2
D. 3
Giá trị nhỏ nhất và lớn nhất của hàm số y = 2 sin x + cos x + 1 sin x - cos 2 x + 3 lần lượt là:
A. – 1/2 và 2
B. 1/2 và 2
C. -2 và -1/2
D. -2 và 1/2
Chọn A
↔ (2-y)sinx + (1+2y)cosx= 3y-1(*)
Sử dụng điều kiện để phương trình (*) có nghiệm suy ra -1/2 ≤ y ≤ 2
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số sau:
y=sinx - cosx -sin2x + 1
y=2( sinx + cosx )+4 sinx.cosx - 2
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau y = sinx - cos x
A: max y = 1; min y = - 1 2
B: max y = 1; min y = -1
C: max y = 1; min y = 0
D: Đáp án khác
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số y = cos 2 x + 2 cos 2 x
Vì -1 ≤ cos2x ≤ 1 nên giá trị lớn nhất của y là 3, đạt được khi x = 0, giá trị nhỏ nhất của y là -2, đạt được khi x = π/2
Cho hàm số y = cos x + cos x − π 3 . Gọi M và m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số. Tìm M 2 + m 2 .
A. 6
B. 8
C. 0
D. 2
Đáp án A.
Điều kiện x ∈ ℝ
y = cos x + cos x − π 3 = cos x + cos x . cos π 3 + sin x . sin π 3 = cos x + 1 2 cos x + 3 2 sin x
= 3 2 cos x + 3 2 sin x
Cách 1: y = 3 3 2 cos x + 1 2 sin x = 3 sin x + π 3 Suy ra − 3 ≤ y ≤ 3
Vậy m = − 3 ; M = 3 và do đó M 2 + m 2 = 6
Cách 2:
Áp dụng bất đẳng thức Bunyakovsky ta có:
3 2 cos x + 3 2 sin x 2 ≤ 3 2 2 + 3 2 2 cos x 2 + sin x 2
⇔ 3 2 cos x + 3 2 sin x 2 ≤ 3 ⇔ − 3 ≤ y ≤ 3
⇒ M = 3 khi 2 3 cos x = 2 3 sin x 3 2 cos x + 3 2 sin x = 3
Tương tự ta có m = − 3 khi 2 3 cos x = 2 3 sin x 3 2 cos x + 3 2 sin x = − 3
⇒ M 2 + m 2 = 3 2 + − 3 2 = 6
Vậy ta chọn A.
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số sau:
1,\(y=5-3cosx\)
2,\(y=3cos^2x-2cosx+2\)
3,\(y=cos^2x+2cos2x\)
4,\(y=\sqrt{5-2sin^2x.cos^2x}\)
5,\(y=cos2x-cos\left(2x-\dfrac{\pi}{3}\right)\)
6,\(y=\sqrt{3}sinx-cosx-2\)
7,\(y=2cos^2x-sin2x+5\)
8,\(y=2sin^2x-sin2x+10\)
9,\(y=sin^6x+cos^6x\)
Tìm tập giá trị lớn nhất, giá trị nhỏ nhất của hàm số sau y = sin 2 x + 2 cos 2 x + 3 2 sin 2 x - cos 2 x + 4