Rút gọn \(\sqrt{19-8\sqrt{3}}\)
\(\sqrt{19-8\sqrt{ }3}\)
rút gọn giúp mình
\(\sqrt{19-8\sqrt{3}}\)
\(= \sqrt{16-8\sqrt{3}+3}\)
\(=\sqrt{(4-\sqrt{3})^2}\)
\(=\)\(|4-\sqrt{3}|\)
\(=4-\sqrt{3}\)
Rút gọn biểu thức:
a)\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}\)
b)\(\sqrt{\left(\sqrt{3}+4\right)\sqrt{19-8\sqrt{3}}+3}\)
\(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}=\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(4\sqrt{3}+\sqrt{5}\right)^2}\)
\(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}-\sqrt{5}\)
\(=2\sqrt{2}-4\sqrt{3}-2\sqrt{5}\)
\(\sqrt{\left(4+\sqrt{3}\right)\sqrt{19-8\sqrt{3}}+3}=\sqrt{\left(4+\sqrt{3}\right)\sqrt{\left(4-\sqrt{3}\right)^2}+3}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)+3}=\sqrt{4-3+3}=2\)
a) Ta có: \(\sqrt{13-\sqrt{160}}-\sqrt{53+4\sqrt{60}}\)
\(=2\sqrt{2}-\sqrt{5}-4\sqrt{3}+\sqrt{5}\)
\(=2\sqrt{2}-4\sqrt{3}\)
b) Ta có: \(\sqrt{\left(4+\sqrt{3}\right)\cdot\sqrt{19-8\sqrt{3}+3}}\)
\(=\sqrt{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)+3}\)
=4
Rút gọn:
a/ \(\left(4+\sqrt{3}\right).\sqrt{19-8\sqrt{3}}\)
b/ \(\sqrt{14-6\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)
rút gọn và tính giá trị biểu thức:
\(E=\left(\frac{\sqrt{\sqrt{x}-1}}{\sqrt{\sqrt{x}+1}}+\frac{\sqrt{\sqrt{x}+1}}{\sqrt{\sqrt{x}-1}}\right):\sqrt{\frac{1}{x-1}}vớix=19-8\sqrt{3}\)
\(E=\left(\frac{\sqrt{\sqrt{x}-1}}{\sqrt{\sqrt{x}+1}}+\frac{\sqrt{\sqrt{x}+1}}{\sqrt{\sqrt{x}-1}}\right):\sqrt{\frac{1}{x-1}}\) \(ĐKXĐ:x>1\)
\(E=\left(\frac{\left(\sqrt{\sqrt{x}-1}\right)^2}{\left(\sqrt{\sqrt{x}+1}\right)\left(\sqrt{\sqrt{x}-1}\right)}+\frac{\left(\sqrt{\sqrt{x}+1}\right)^2}{\left(\sqrt{\sqrt{x}-1}\right)\left(\sqrt{\sqrt{x}+1}\right)}\right)\cdot\sqrt{\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{1}}\)
\(E=\left(\frac{\sqrt{x}-1}{\left(\sqrt{\sqrt{x}+1}\right)\left(\sqrt{\sqrt{x}-1}\right)}+\frac{\sqrt{x}+1}{\left(\sqrt{\sqrt{x}-1}\right)\left(\sqrt{\sqrt{x}+1}\right)}\right)\cdot\sqrt{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(E=\frac{\sqrt{x}-1+\sqrt{x}+1}{\left(\sqrt{\sqrt{x}+1}\right)\left(\sqrt{\sqrt{x}-1}\right)}\cdot\sqrt{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(E=\frac{2\sqrt{x}}{\sqrt{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}}\cdot\sqrt{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=2\sqrt{x}\)
Ta có:\(x=19-8\sqrt{3}=16-2.4\sqrt{3}+3=\left(4-\sqrt{3}\right)^2\)
\(\Rightarrow2\sqrt{x}=2.\sqrt{\left(4-\sqrt{3}\right)^2}=2.\left(4-\sqrt{3}\right)=8-2\sqrt{3}\)
A=\(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}\)
B=\(\dfrac{2a+\sqrt{a}}{a-\sqrt{a}+1}-1\)
a, Tính A khi a = \(19-8\sqrt{3}\)
b, Rút gọn M= A-B
c, Tìm m để M = 2
d, Tìm Min M
\(\left\{1+\dfrac{\sqrt{a}}{a+1}\right\}:\left\{\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right\}\)
a, Rút gọn P
b, Tìm giá trị của a để P<1
c, Tìm giá trị của P nếu a = 19-8\(\sqrt{3}\)
a: \(P=\dfrac{a+\sqrt{a}+1}{a+1}:\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\dfrac{a+\sqrt{a}+1}{a+1}:\dfrac{a+1-2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}-1\right)}\)
\(=\dfrac{a+\sqrt{a}+1}{\sqrt{a}-1}\)
b: Để P<1 thì P-1<0
\(\Leftrightarrow\dfrac{a+\sqrt{a}+1-\sqrt{a}+1}{\sqrt{a}-1}< 0\)
hay 0<a<1
a) \(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\)
b) \(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\)
c) \(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\)
đề bài là rút gọn biểu thức
giải chi tiết hộ mình ạ !!!
a: Ta có: \(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\)
\(=\sqrt{5}+\sqrt{3}-\sqrt{5}-1\)
\(=\sqrt{3}-1\)
b: Ta có: \(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\)
\(=3-2\sqrt{2}+3\sqrt{2}+1\)
\(=4+\sqrt{2}\)
c: Ta có: \(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\)
\(=2\sqrt{2}-2+2\sqrt{2}+1\)
\(=4\sqrt{2}-1\)
a)
\(\sqrt{8+2\sqrt{15}}-\sqrt{6+2\sqrt{5}}\\ =\sqrt{5+2\sqrt{5}\cdot\sqrt{3}+3}-\sqrt{5+2\sqrt{5}\cdot\sqrt{1}+1}\\ =\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{1}\right)^2}\\ =\sqrt{5}+\sqrt{3}-\sqrt{5}-\sqrt{1}\\ =\sqrt{3}-\sqrt{1}\)
b)
\(\sqrt{17-2\sqrt{72}}+\sqrt{19+2\sqrt{18}}\\ =\sqrt{9-2\sqrt{9}\cdot\sqrt{8}+8}+\sqrt{18+2\sqrt{18}\cdot\sqrt{1}+1}\\ =\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3\sqrt{2}+1\right)^2}\\ =3-2\sqrt{2}+3\sqrt{2}+1\\ =4+\sqrt{2}\)
c)
\(\sqrt{12-2\sqrt{32}}+\sqrt{9+4\sqrt{2}}\\ =\sqrt{8-2\sqrt{8}\cdot\sqrt{4}+4}+\sqrt{8+2\sqrt{8}\cdot\sqrt{1}+1}\\ =\sqrt{\left(2\sqrt{2}-2\right)^2}+\sqrt{\left(2\sqrt{2}+1\right)^2}\\ =2\sqrt{2}-2+2\sqrt{2}+1\\ =4\sqrt{2}-1\)
Cho P= \(\left(1+\dfrac{\sqrt{a}}{a+1}\right)\) : \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
với a\(\ge\)0 ; a \(\ne\)1
a, Rút gọn P
b, Tìm a để P<1
c,Tìm P khi a= \(19-8\sqrt{3}\)
a: \(P=\dfrac{a+\sqrt{a}+1}{a+1}:\dfrac{a+1-2\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+1\right)}\)
\(=\dfrac{a+\sqrt{a}+1}{a+1}\cdot\dfrac{\left(a+1\right)}{\sqrt{a}-1}=\dfrac{a+\sqrt{a}+1}{\sqrt{a}-1}\)
b: P<1
=>P-1<0
=>\(\dfrac{a+\sqrt{a}+1-\sqrt{a}+1}{\sqrt{a}-1}< 0\)
=>\(\dfrac{a+2}{\sqrt{a}-1}< 0\)
=>căn a-1<0
=>0<=a<1
c: Khi a=19-8căn 3=(4-căn 3)^2 thì \(P=\dfrac{19-8\sqrt{3}+4-\sqrt{3}+1}{4-\sqrt{3}-1}=\dfrac{24-9\sqrt{3}}{3-\sqrt{3}}=\dfrac{15-\sqrt{3}}{2}\)
Rút gọn biểu thức:
a) \(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}\)
b) \(\dfrac{\sqrt{21+8\sqrt{5}}}{4+\sqrt{5}}.\sqrt{9-4\sqrt{5}}\)
a)\(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}=\sqrt{\dfrac{1}{2}\left(16+8\sqrt{3}\right)}-\sqrt{\dfrac{1}{2}\left(16-8\sqrt{3}\right)}\)
\(=\sqrt{\dfrac{1}{2}\left(2+2\sqrt{3}\right)^2}-\sqrt{\dfrac{1}{2}\left(2-2\sqrt{3}\right)^2}\)\(=\sqrt{\dfrac{1}{2}}\left(2+2\sqrt{3}\right)-\sqrt{\dfrac{1}{2}}\left(2\sqrt{3}-2\right)=2\sqrt{2}\)
b)\(=\dfrac{\sqrt{16+2.4\sqrt{5}+5}}{4+\sqrt{5}}.\sqrt{\left(2-\sqrt{5}\right)^2}\)\(=\dfrac{\sqrt{\left(4+\sqrt{5}\right)^2}}{4+\sqrt{5}}\left|2-\sqrt{5}\right|=\sqrt{5}-2\)
a) Ta có: \(\sqrt{8+4\sqrt{3}}-\sqrt{8-4\sqrt{3}}\)
\(=\sqrt{6}+\sqrt{2}-\sqrt{6}+\sqrt{2}\)
\(=2\sqrt{2}\)
b) Ta có: \(\dfrac{\sqrt{21+8\sqrt{5}}}{4+\sqrt{5}}\cdot\sqrt{9-4\sqrt{5}}\)
\(=\left(4+\sqrt{5}\right)\left(4-\sqrt{5}\right)\)
=16-5=11