Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Minh Minh Thư
Xem chi tiết

\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{203.205}\) 

\(=\dfrac{1}{2}.\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{203.205}\right)\) 

\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{203}-\dfrac{1}{205}\right)\) 

\(=\dfrac{1}{2}.\left(\dfrac{1}{3}-\dfrac{1}{205}\right)\) 

\(=\dfrac{1}{2}.\dfrac{202}{615}\) 

\(=\dfrac{101}{615}\) 

Chúc bạn học tốt!

Nguyễn Thị Thu Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2021 lúc 17:47

a: cứ mỗi số tăng lên 3 đơn vị

hung phung
Xem chi tiết
Nguyễn Hà Linh
17 tháng 9 2023 lúc 20:49

a,  Quy luật dãy số trên: mỗi chữ số cách nhau 3 đơn vị.

b, A = {2 ; 5 ; 8 ; 11 ; 14 ; 17 ; 20 ; 23 ; 26 ; 29}

c, Dựa theo quy luật tính số hạng ta có:

        2 + (20-1) . 3 = 59

⇒ số hạng thứ 20 của dãy là 59 

Số 10 không phải là số hạng của dãy số trên.

Vì :

Tổng các số khi cộng cho 3 của dãy số trên không có tổng nào bằng 10 vậy nên 10 không phải số hạng của dãy số trên.

Tổng của 20 số hạng đầu tiên của dãy số là:

    (59 + 2) . 20 : 2 = 610

NGUYỄN MAI GIA BẢO
Xem chi tiết
Thám Tử THCS Nguyễn Hiếu
22 tháng 5 2019 lúc 15:06

a) Ta gọi số hạng thứ 10 là a

Khoảng cách giữa các số là 2

Suy ra ta có công thức tính số các số hạng của dãy, cụ thể ở đây là 10: (a - 2012) : 2 + 1 = 10

Ta có : (a - 2012) : 2 + 1 = 10

Giải ra ta được a = 2030

Vậy số hạng thứ 10 là 2030

b) Tổng 10 số hạng đầu tiên là:

(2030 + 2012) x 10 : 2 = 20210

Tiểu thư họ Đoàn
Xem chi tiết
Nguyễn Hoàng Minh Nguyên
26 tháng 8 2017 lúc 15:47

1)55=4+5+6+7+8+9+10+11

Hoàng Thị Thanh Trúc
26 tháng 8 2017 lúc 17:12

1. 55= 1+2+3+...+9+10

2. 1,2,3,...30,31

Tiểu thư họ Đoàn
Xem chi tiết
Ben 10
26 tháng 8 2017 lúc 20:23

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

VũThị Yến Vy
Xem chi tiết
Nguyễn Hải Minh
Xem chi tiết

TL:

Mk bt làm câu a thôi ;<

a) B = { 21 ; 36 ; 36 ; 41 ; 46 ; 51 }

HT

@Kawasumi Rin

Khách vãng lai đã xóa
Hoàng Điệp Lê (Rynno_CH)
Xem chi tiết
Akai Haruma
17 tháng 9 2023 lúc 17:43

Bài 10:

Số lẻ đầu tiên trong 21 số lẻ liên tiếp đầu tiên là: 1

Số lẻ cuối cùng trong 21 số lẻ liên tiếp đầu tiên là: $2.21-1=41$

Tổng của 21 số lẻ liên tiếp đầu tiên là:

$(41+1)\times 21:2=441$

Akai Haruma
17 tháng 9 2023 lúc 17:45

Bài 11:

a.

Số hạng đầu tiên: $10=5.1+5$

Số hạng T2: $15=5.2+5$
Số hạng T3: $20=5.3+5$

.....

Số hạng thứ 19 là: $5.19+5=100$

b. 

Ta thấy dãy trên là 1 dãy cách đều với khoảng cách là 2.

Gọi số hạng đầu tiên là $x$. Ta có:

$(56-x):2+1=25$

$(56-x):2=24$

$56-x=24\times 2=48$

$x=56-48=8$

Vậy số hạng đầu tiên là $8$.