Chứng minh rằng 2 số tự nhiên liên tiếp bất kì luôn là 2 số nguyên tố cùng nhau
Chứng minh rằng :
a) Hai số tự nhiên liên tiếp bất kì nguyên tố cùng nhau
b) Hai số tự nhiên lẻ liên tiếp bất kì nguyên tố cùng nhau
chứng minh rằng
a) hai số lẻ liên tiếp
b) 2N+5 VÀ 3n+7
chứng tỏ rằng
a)2 số tự nhiên liên tiếp bất kì nguyên tố cùng nhau
b)2 số tự nhiên liên tiếp lẻ bất kì nguyên tố cùng nhau
Chứng tỏ rằng 2 số tự nhiên lẻ liên tiếp bất kì là 2 số nguyên tố cùng nhau.
Gọi 2 số tự nhiên lẻ là a và a+2, ƯC(a,a+2)=d
=>a chia hết cho d( vì a lẻ=>d lẻ)
a+2 chia hết cho d
=>a+2-a chia hết cho d
=>2 chia hết cho d
=>d=Ư(2)=(1,2)
Vì d lẻ
=>d=1
=>ƯC(a,a+2)=1
=>a và a+2 là 2 số nguyên tố cùng nhau
=>ĐPCM
chứng minh rằng :
a, hai số tự nhiên liên tiếp bất kì nguyên tố cùng nhau.
b, hai số tự nhiên lẻ liên tiếp bất kì nguên tố cùng nhau
Ai nhanh và đúng nhất mình **** cho
a,gọi 2 STN liên tiếp là a và a+1
gọi ước chung của hai số là d. Ta có:
(a+1)-a chia hết cho d
=>1 chia hết cho d=>d=1
Vậy a và a+1 nguyên tố cùng nhau
b,gọi hai STN lẻ liên tiếp là a và a+2.Gọi ước chung của hai số là d
Ta có: (a+2)-a chhia hết cho d
=>2 chia hết cho d
=>d=1 hoặc 2
d khác 2 vì d là ước của số lẻ
Vậy d=1 =>a và a+2 nguyên tố cùng nhau
tick đi
chứng tỏ rằng bất kì 2 số tự nhiên liên tiếp nào cũng là số nguyên tố cùng nhau
Gọi 2 số tự nhiên đó là a;a+1 và ƯCLN của chúng = d
Ta có: a+1 chia hết cho d
a chia hết cho d
=> (a+1)-a=1 chia hết cho d
=> d thuộc Ư(1)={1}
Vì ƯCLN(a;a+1)=1
=> ĐPCM
Gọi 2 số tự nhiên liên tiếp là : a và a+1 ; UCLN(a:a+1)=d
Ta có : a chia hết cho d
a+1 chia hết cho d
=>(a+1) - a chia hết cho d
=>1 chia hết cho d
=> d =1
Vậy bất kì 2 số tự nhiên nào cũng nguyên tố cùng nhau
Chứng minh rằng 2 số tự nhiên lẻ liên tiếp luôn là 2 số nguyên tố cùng nhau
Gọi hai số đó là:2k+1 và 2k+3(k thuộc N) và ƯCLN(2k+1,2k+3)=d
=>2k+1 chia hết cho d và 2k+3 chia hết cho d
=>(2k+1)-(2k+3) chia hết cho d
=>2 chia hết cho d =>ƯCLN(2k+1,2k+3) thuộc 1 hoặc 2
Mà 2k+1 và 2k+3 là số lẻ
=>ƯCLN(2k+1,2k+3)=1
=>2 số lẻ liên tiếp là hai số nguyên tố cùng nhau
gọi ước chung của 2 sô d và 2 số lẻ liên tiếp là a và a+2
=>(a+200-a chia hết cho d
=>2 chia hết cho d
=>d=1 hoặc d=2
mà 2 số đó là số lẻ nên d\(\ne\)2
=>d=1
=> hai số đó nguyên tố cùng nhau
Công chúa giá băng phải là
(2k+3)-(2k+1)
Chứng minh rằng 2 số tự nhiên liên tiếp luôn nguyên tố cùng nhau
Chứng tỏ rằng 2 số tự nhiên ;lẻ liên tiếp bất kì là 2 số nguyên tố cúng nhau
Chứng minh rằng : hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau
Chứng minh rằng:2n+5 và 3n+7 là hai số nguyên tố cùng nhau
1)Gọi 2 số tự nhiên liên tiếp là n và n+1
Đặt ƯCLN(n,n+1)=d
Ta có: n chia hết cho d
n+1 chia hết cho d
=>n+1-n chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(n,n+1) =1
=>n và n+1 là 2 số nguyên tố cùng nhau
2)Gọi ƯCLN(2n+5,3n+7)=d
Ta có: 2n+5 chia hết cho d=>3.(2n+5) chia hết cho d=>6n+15 chia hết cho d
3n+7 chia hết cho d=>2.(3n+7) chia hết cho d=>6n+14 chia hết cho d
=>6n+15-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(2n+5,3n+7)=1
=>2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
a)
Gọi 2 số tự nhiên liên tiếp là n; n+1
Gọi ƯCLN ( n;n+1) la d
=> n chia hết cho d; n+1 chia hết cho d
=> n+1-n chia hết cho d
=> 1 chia hết cho d
=> d =1
=> ƯCLN ( n;n+1) =1
=> hai số tự nhiên liên tiếp luôn là hai số nguyên tố cùng nhau
b)
Gọi ƯCLN( 2n+5;3n+7) la d
=> 2n+5 chia hết cho d ; 3n+7 chia hết cho d
=> 3.(2n+5) chia hết cho d ; 2.(3n+7) chia hết cho d
=> 6n+15 chia hết cho d ; 6n+14 chia hết cho d
=> 6n+15-(6n+14) chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> ƯCLN( 2n+5;3n+7)=1
=>2n+5 và 3n+7 là hai số nguyên tố cùng nhau
Gọi (2n+5;3n+7) chia hết cho d
=> (2n+5) chia hết cho d
3(2n+5) chia hết cho d
(6n+15) (1) chia hết cho d
(3n+7) chia hết cho d
2(3n+7) chia hết cho d
(6n+14) (2) chia hết cho d
Lấy (1) - (2) = (6n+15) - (6n+14) = 1 chia hết cho d
Vậy (2n+5) và ( 3n+7) là hai nguyên tố cùng nhau