cho phương trình:\(^{x^2-2x+3m=0}\) Tìm m để phương trình có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2x_2^2=x_1+x_2+7\)
cho phương trình:\(^{x^2-2x+3m=0}\) Tìm m để phương trình có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1^2x_2^2=x_1+x_2+7\)
Để phương trình có 2 nghiệm
\(\Delta'\ge0\Rightarrow\left(-1\right)^2-1.3m\ge0\Leftrightarrow1-3m\ge0\Leftrightarrow1\ge3m\Leftrightarrow\dfrac{1}{3}\ge m\)
Theo hệ thức Vi-et ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2\right)}{1}=2\\x_1x_2=\dfrac{3m}{1}=3m\end{matrix}\right.\)
Ta có:
\(x_1^2x_2^2=x_1+x_2+7\\ \Leftrightarrow x_1x_2.x_1x_2=x_1+x_2+7\\ \Rightarrow3m.3m=2+7\\ \Leftrightarrow9m^2-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-1\left(tm\right)\\m=1\left(ktm\right)\end{matrix}\right.\)
Vậy m = -1
Cho phương trình \(x^2-2\left(m+1\right)x+m^2-m-6\)=0
a) Tìm m để phương trình đã cho có hai nghiệm trái dấu.
b) Phương trình đã cho có hai nghiệm cùng âm.
c) Phương trình đã cho có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1< -1< x_2\)
d Phương trình đã cho có hai nghiệm phân biệt cùng lớn hơn 1.
a: Để phương trình có hai nghiệm trái dấu thì \(\left(m^2-m-6\right)\cdot1< 0\)
\(\Leftrightarrow\left(m-3\right)\left(m+2\right)< 0\)
\(\Leftrightarrow-2< m< 3\)
Cho phương trình \(x^2-2x+m-1=0\) (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm \(x_1,x_2\) thỏa mãn hệ thức \(x_1^4-x_1^3=x_2^4-x_2^3\)
\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2-m\ge0\Leftrightarrow m\le2\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)
\(x^4_1-x^3_1=x^4_2-x^3_2\\ \Leftrightarrow\left(x^4_1-x_2^4\right)-\left(x^3_1+x^3_2\right)=0\\ \Leftrightarrow\left(x^2_1-x^2_2\right)\left(x^2_1+x^2_2\right)-\left(x_1+x_2\right)\left(x^2_1+x^2_2-x_1x_2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=0\\ \Leftrightarrow\left(m-1\right).2\left[2^2-2\left(m-1\right)\right]-2\left[2^2-3\left(m-1\right)\right]=0\)
\(\Leftrightarrow\left(2m-2\right)\left(4-2m+2\right)-2\left(4-3m+3\right)=0\)
\(\Leftrightarrow\left(2m-2\right)\left(6-2m\right)-2\left(7-3m\right)=0\)
\(\Leftrightarrow...\)
\(\Delta'=\left(-1\right)^2-\left(m-1\right)=1-m+1=2-m\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow2-m\ge0\Leftrightarrow m\le2\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m-1\end{matrix}\right.\)
\(x^4_1-x^3_1=x^4_2-x^3_2\\ \Leftrightarrow\left(x^4_1-x_2^4\right)-\left(x^3_1-x^3_2\right)=0\\ \Leftrightarrow\left(x^2_1-x^2_2\right)\left(x^2_1+x^2_2\right)-\left(x_1-x_2\right)\left(x^2_1+x^2_2+x_1x_2\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]=0\)
\(\Leftrightarrow\left(x_1-x_2\right).2\left(4-2m+2\right)-\left(x_1-x_2\right)\left(4-m+1\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right).2\left(6-2m\right)-\left(x_1-x_2\right)\left(5-m\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(12-4m-5+m\right)=0\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(7-3m\right)=0\)
\(\Leftrightarrow...\)
Cho phương trình : x\(^2\) + 2x -3 - m = 0
Chứng minh phương trình trên có hai nghiệm x\(_1\),x\(_2\) với mọi m. Tìm m để \(\dfrac{x_1}{x_2}\) - \(\dfrac{x_2}{x_1}\) = -\(\dfrac{8}{3}\)
Giải giúp mình với ạ !!!
Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:
$\Delta'=1+(3+m)=4+m\geq 0\Leftrightarrow m\geq -4$ (chứ không phải với mọi m như đề bạn nhé)!
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=-2\\ x_1x_2=-(m+3)\end{matrix}\right.\)
$x_1, x_2\neq 0\Leftrightarrow -(m+3)\neq 0\Leftrightarrow m\neq -3$
$\frac{x_1}{x_2}-\frac{x_2}{x_1}=\frac{-8}{3}$
$\Leftrightarrow \frac{x_1^2-x_2^2}{x_1x_2}=\frac{-8}{3}$
$\Leftrightarrow \frac{-2(x_1-x_2)}{-(m+3)}=\frac{-8}{3}$
$\Leftrightarrow x_1-x_2=\frac{4}{3}(m+3)$
$\Rightarrow (x_1-x_2)^2=\frac{16}{9}(m+3)^2$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=\frac{16}{9}(m+3)^2$
$\Leftrightarrow 4+4(m+3)=\frac{16}{9}(m+3)^2$
$\Leftrightarrow m+3=3$ hoặc $m+3=\frac{-3}{4}$
$\Leftrightarrow m=0$ hoặc $m=\frac{-15}{4}$ (đều thỏa mãn)
Cho phương trình \(x^2-2x+m+2=0\). Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn:
\(\sqrt{\left(x_1^2+mx_2-4x_1+4\right)\left(x_2^2+mx_1-4x_2+4\right)}=\left|x_2-x_1\right|\sqrt{x_1x_2}\)
Cho phương trình: \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a) CMR phương trình luôn có hai nghiệm phân biệt với mọi m
b) Xác định m để phương trình có hai nghiệm \(x_1,x_2\) thoả mãn \(1< x_1< x_2< 6\)
a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.
Câu b mình nhìn không rõ đề, bạn sửa lại nhé.
Câu 1: Cho phương trình: x\(^2\) - 5x + m = 0 (m là tham số)
a) Giải phương trình trên khi m = 6
b) Tìm m để phương trình trên có hai nghiệm x\(_1\), x\(_2\) thỏa mãn: \(\left|x_1-x_2\right|=3\)
Câu 2: Cho phương trình 2x\(^2\) - 6x + 3m + 2 = 0 ( với m là tham số). Tìm các giá trị của m để phương trình đã cho có hai nghiêm x\(_1\), x\(_2\) thảo mãn: \(x^3_1+x^3_2=9\)
a Tìm m để phương trình \(x^2-\left(2m+1\right)x+m^2+1=0\)
có hai nghiệm phân biệt trong đó nghiệm này
gấp đôi nghiệm kia
b Tìm m để phương trình \(x^2-2mx+m-3=0\) có hai nghiệm \(x_1,x_2\) thỏa mãn \(x_1+2x_2\) =1
c Tìm m để phương trình \(x^2-2mx+\left(m-1\right)^3=0\)
có hai nghiệm trong đó nghiệm này là bình
phương của nghiệm kia .
d Tìm m để phương trình \(2x^2-\left(m+1\right)x+m+3=0\) có hai nghiệm sao cho hiệu hai nghiệm bằng 1.
d: Ta có: \(\text{Δ}=\left(m+1\right)^2-4\cdot2\cdot\left(m+3\right)\)
\(=m^2+2m+1-8m-24\)
\(=m^2-6m-23\)
\(=m^2-6m+9-32\)
\(=\left(m-3\right)^2-32\)
Để phương trình có hai nghiệm phân biệt thì \(\left(m-3\right)^2>32\)
\(\Leftrightarrow\left[{}\begin{matrix}m-3>4\sqrt{2}\\m-3< -4\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>4\sqrt{2}+3\\m< -4\sqrt{2}+3\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1x_2=\dfrac{m+3}{2}\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{m+1}{2}\\x_1-x_2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=\dfrac{m+3}{2}\\x_2=x_1-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{m+3}{4}\\x_2=\dfrac{m+3}{4}-\dfrac{4}{4}=\dfrac{m-1}{4}\end{matrix}\right.\)
Ta có: \(x_1x_2=\dfrac{m+3}{2}\)
\(\Leftrightarrow\dfrac{\left(m+3\right)\left(m-1\right)}{16}=\dfrac{m+3}{2}\)
\(\Leftrightarrow\left(m+3\right)\left(m-1\right)=8\left(m+3\right)\)
\(\Leftrightarrow\left(m+3\right)\left(m-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=9\end{matrix}\right.\)
( 2 điểm )
1) Cho phương trình x2- 2x + m = 0 ( với m là số thực thoả mãn m < 1 ). Chứng minh phương trình đã cho có hai nghiệm phân biệt.
2) Cho x1 và x2 là hai nghiệm của phương trình x2+ 2x- 1 = 0.
Tính giá trị của biểu thức P = \(\dfrac{1}{x_1}\)+ \(\dfrac{1}{x_2}\)
1) \(\Delta'=1-m>0\forall m< 1\)
Vậy phương trình đã cho luôn có hai nghiệm phân biệt
2) Do a = 1; c = -1 nên a và c trái dấu
Do đó phương trình luôn có hai nghiệm phân biệt
Theo Viét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-1\end{matrix}\right.\)
\(\Rightarrow P=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_2+x_1}{x_1x_2}=\dfrac{-2}{-1}=2\)
Cho phương trình \(2x^2-4x+5\left(m-1\right)=0\)
a) Tìm m để phương trình có hai nghiệm phân biệt nhỏ hơn 3
b) Tìm m để phương trình có hai nghiệm phân biệt lớn hơn 3
c) Tìm m để phương trình có hai nghiệm thỏa mãn \(x_1< 3< x_2\)
a: \(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot5\left(m-1\right)\)
\(=16-40\left(m-1\right)\)
\(=16-40m+40\)
=-40m+56
Để phương trình có hai nghiệm phân biệt nhỏ hơn 3 thì
\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}< 6\end{matrix}\right.\Leftrightarrow-40m>-56\)
hay m<7/5
b: Để phương trình có hai nghiệm phân biệt lớn hơn 3 thì
\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}>6\end{matrix}\right.\Leftrightarrow m\in\varnothing\)