Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Minh Anh
Xem chi tiết
nguyễn lý thảo vân
Xem chi tiết
Phước Nguyễn
27 tháng 12 2015 lúc 15:45

Ta có:

\(9x^2+y^2+z^2-36x-16y+10z=-125\)

\(\Leftrightarrow\)  \(9x^2+y^2+z^2-36x-16y+10z+125=0\)

\(\Leftrightarrow\)  \(9x^2-36x+36+y^2-16y+64+z^2+10z+25=0\)

\(\Leftrightarrow\)  \(9\left(x-2\right)^2+\left(y-8\right)^2+\left(z+5\right)^2=0\)

Mà   \(\left(x-2\right)^2;\left(y-8\right)^2;\left(z+5\right)^2\ge0\)  với mọi   \(x;y;z\)

nên   \(\left(x-2\right)^2=0;\left(y-8\right)^2=0;\left(z+5\right)^2=0\)

\(\Leftrightarrow\)   \(x-2=0;y-8=0;z+5=0\)

\(\Leftrightarrow\)   \(x=2;y=8;z=-5\)

Vậy,   \(xy+yz+xz=-34\)

Song tử
Xem chi tiết
Pham Van Hung
Xem chi tiết
cc cc
Xem chi tiết
Đào Thu Hoà
7 tháng 6 2019 lúc 21:12

Ta có x,y,z là các số thực dương 

Khi đó : \(5\left(x^2+y^2+z^2\right)-9x\left(y+z\right)-18yz=0.\)

\(\Leftrightarrow5\frac{x^2}{\left(y+z\right)^2}+\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}-\frac{9x}{y+z}-\frac{18yz}{\left(y+z\right)^2}=0\)

\(\Leftrightarrow5\left(\frac{x}{y+z}\right)^2-\frac{9x}{y+z}=\frac{18yz}{\left(y+z\right)^2}-\frac{5\left(y^2+z^2\right)}{\left(y+z\right)^2}\)

                                                \(\le\frac{\frac{18\left(y+z\right)^2}{4}}{\left(y+z\right)^2}-\frac{\frac{5\left(y+z\right)^2}{2}}{\left(y+z\right)^2}=\frac{18}{4}-\frac{5}{2}=2.\)

\(\Rightarrow5\left(\frac{x}{y+z}\right)^2-9.\frac{x}{y+z}\le2.\)

Đặt \(\frac{x}{y+z}=a>0\)ta được \(5a^2-9a-2\le0\)

\(\Leftrightarrow5a^2-10a+a-2\le0\Leftrightarrow\left(5a+1\right)\left(a-2\right)\le0\)

Dễ thấy  \(5a+1>0\)\(\Rightarrow a-2\le0\Leftrightarrow a\le2\Leftrightarrow\frac{x}{y+z}\le2.\)

Ta có: \(Q=\frac{2x-y-z}{y+z}=\frac{2x}{y+z}-1\le2.2-1=3\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}y=z\\\frac{x}{y+z}=2\end{cases}\Leftrightarrow x=4y=4z}\)

Vậy Giá trị lớn nhất của \(Q=3\Leftrightarrow x=4y=4z.\)

Trịnh Hoàng An
Xem chi tiết
Trần Anh Kiệt
Xem chi tiết
Trần Anh Kiệt
27 tháng 7 2016 lúc 12:52

Các bạn ơi, câu b là y^2 nhess

Nguyễn Thị Lan Anh
Xem chi tiết
dekhisuki
Xem chi tiết
Phùng Minh Quân
30 tháng 5 2020 lúc 15:50

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa