a) \(x^3+6x-7\)
b) \(4^2+8x-5\)
c) \(9^2-4y^2+6x-4y\)
a)-6x^3y^2:2xy^2. b)-1/4x^4y^3:1/2x^3y^2. c) 8x^4y^5:4x^3y^4
a: \(=\left(-\dfrac{6}{2}\right)\cdot\dfrac{x^3}{x}\cdot\dfrac{y^2}{y^2}=-3x^2\)
b: \(=\left(-\dfrac{1}{4}:\dfrac{1}{2}\right)\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^3}{y^2}=-\dfrac{1}{2}xy\)
c: \(=\dfrac{8}{4}\cdot\dfrac{x^4}{x^3}\cdot\dfrac{y^5}{y^4}=2xy\)
\(a,-6x^3y^2:2xy^2=-3x^2\)
\(b,-\dfrac{1}{4}x^4y^3:\dfrac{1}{2}x^3y^2=-\dfrac{1}{2}xy\)
\(c,8x^4y^5:4x^3y^4=2xy\)
#Urushi
tính
a)6x^3y-8x^2y^2+4xy
b)x^2-4x+xy-4y
c)x^2-y^2-6x+9
tìm x
a)x^2-2x-3=0
a)(-6x^3y^4+4x^4y^3):2x^3y^3. b)(5x^4y^2-x^3y^2):x^3y^2. c)(27x^3y^5+9x^2y^4-6x^3y^3):(-3x^2y^3)
a: \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{-6x^3y^4}{2x^3y^3}+\dfrac{4x^4y^3}{2x^3y^3}\)
\(=-3y+2x\)
b: \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}=\dfrac{5x^4y^2}{x^3y^2}-\dfrac{x^3y^2}{x^3y^2}\)
\(=5x-1\)
c: \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=-\dfrac{27x^3y^5}{3x^2y^3}-\dfrac{9x^2y^4}{3x^2y^3}+\dfrac{6x^3y^3}{3x^2y^3}\)
\(=-9xy^2-3y+2x\)
a) \(\dfrac{-6x^3y^4+4x^4y^3}{2x^3y^3}\)
\(=\dfrac{2x^3y^3\cdot\left(-3y+2x\right)}{2x^3y^3}\)
\(=-3y+2x\)
\(=2x-3y\)
b) \(\dfrac{5x^4y^2-x^3y^2}{x^3y^2}\)
\(=\dfrac{5x\cdot x^3y^2-x^3y^2\cdot1}{x^3y^2}\)
\(=\dfrac{x^3y^2\cdot\left(5x-1\right)}{x^3y^2}\)
\(=5x-1\)
c) \(\dfrac{27x^3y^5+9x^2y^4-6x^3y^3}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot-9xy^2+-3x^2y^3\cdot-3y+-3x^2y^3\cdot2x}{-3x^2y^3}\)
\(=\dfrac{-3x^2y^3\cdot\left(-9xy^2-3y+2x\right)}{-3x^2y^3}\)
\(=-9xy^2-3x+2x\)
Tìm GTLN - GTNN của các biểu thức ?
* bài 1: Tìm GTNN:
a) A= (x - 5)² + (x² - 10x)² - 24
b) B= (x - 7)² + (x + 5)² - 3
c) C= 5x² - 6x +1
d) D= 16x^4 + 8x² - 9
e) A= (x + 1)(x - 2)(x - 3)(x - 6)
f) B= (x - 2)(x - 4)(x² - 6x + 6)
g) C= x^4 - 8x³ + 24x² - 8x + 25
h) D= x^4 + 2x³ + 2x² + 2x - 2
i) A= x² + 4xy + 4y² - 6x – 12y +4
k) B= 10x² + 6xy + 9y² - 12x +15
l) C= 5x² - 4xy + 2y² - 8x – 16y +83
m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9
* Bài 2: Tìm GTLN:
a) M= -7x² + 4x -12
b) N= -16x² - 3x +14
c) M= -x^4 + 4x³ - 7x² + 12x -5
d) N= -(x² + x – 2) (x² +9x+18) +27
* Bài 3:
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y²
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y²
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³
* Bài 4: Tìm GTLN và GTNN của các biểu thức:
1) A = (3 - 4x)/(x² + 1)
2) B= (8x + 3)/(4x² + 1)
3) C= (2x+1)/(x²+2)
Question Expandand simplify: 1. 8(x+5)-3(2x+7)
2. a(2b+c)+b(3c-2a)
3. 2y(y+5x)+x(3x+4y)
answer , 1. 8(x+5)-3(2x+7)=8x+40-6x+21=2x+61
2. a(2b+c)+b(3c-2a)=2ab+ac+3bc-2ab=ac+3bc=3abc^(2)
3. 2y(y+5x)+x(3x+4y)=2y^(2)+10xy+9x^(2)+4xy=9x^(2)+2y^(2)+14xy
a Explain what he has done wrong.
b work out the correct answer
1) Phân tích đa thức
a) x^3 - x^2 - 4x^2 + 8x - 4
b) ( 4x^2 - 25) - ( 2x-5) ( 2x+7)
c) x(x+1) ( x+2) ( x+3) + 1
d) x^2 - 4y + 6x - 4y + 8
e) x^2 - 4x - 21
f) x^2 - 7x + 12
b,(4x2 - 25)-(2x-5)(2x+7)
=(2x)2-52 -(2x-5)(2x+7)
=(2x-5)(2x+5)-(2x-5)(2x+7)
=(2x-5)(2x+5-2x-7)
=(2x-5).(-2)
e,x2-4x-21
=x2-7x+3x-21
=x(x-7)+3(x-7)
=(x-7)(x+3)
f,x2-7x+12
= x2 -4x-3x+12
=x(x-4)-3(x-4)
(x-4)(x-3)
Bạn tham khảo nhé mk chỉ giúp được ngần đây thui
tính
a)6x^3y-8x^2y^2+4xy
b)x^2-4x+xy-4y
c)x^2-y^2-6x+9
tìm x
a)x^2-2x-3=0
\(x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
Vậy x = -1 hoặc x = 3
A= x^2- 4y^4, B= 8x^3+1 , C=54x^3-16y^3, D=x^2-6x+8, E=2x^2-5x+2, G=x^4+2x^2-3
\(A=x^2-4y^4=\left(x-2y^2\right)\left(x+2y^2\right)\)
\(B=8x^3+1=\left(2x+1\right)\left(4x^2-2x+1\right)\)
\(C=54x^3-16y^3=2\left(27x^3-8y^3\right)=2\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)
\(D=x^2-6x+8=\left(x^2-6x+9\right)-1=\left(x-3\right)^2-1=\left(x-3-1\right)\left(x-3+1\right)=\left(x-4\right)\left(x-2\right)\)
\(E=2x^2-5x+2=\left(2x^2-4x\right)-\left(x-2\right)=2x\left(x-2\right)-\left(x-2\right)=\left(x-2\right)\left(2x-1\right)\)
\(G=x^4+2x^2-3=\left(x^4+3x^2\right)-\left(x^2+3\right)=x^2\left(x^2+3\right)-\left(x^2+3\right)=\left(x^2+3\right)\left(x^2-1\right)=\left(x^2+3\right)\left(x-1\right)\left(x+1\right)\)
Tìm GTNN:
a)A=x^4-2x^3=3x^2-4x+1996
b)B=2x^2+9y^2-6xy-6x+12y=2025
c)C=2x^2+4y^2+4xy+2x+4y+9
d)D=x^4-6x^2+10
d) D = x4 - 6x2 + 10
D = (X2)2 - 2. x2. 3 + 32 + 1
D = (x2 - 3)2 + 1
(x2 - 3)2 >= 0 với mọi x
(x2 - 3)2 + 1 >=1 với moi5 x
Vậy GTNN của D là 1