Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TRÂN LÊ khánh
Xem chi tiết
Yukru
20 tháng 7 2018 lúc 9:11

a) \(\left(n+6\right)^2-\left(n-6\right)^2\)

\(=\left[\left(n+6\right)-\left(n-6\right)\right]\left[\left(n+6\right)+\left(n-6\right)\right]\)

\(=\left(n+6-n+6\right)\left(n+6+n-6\right)\)

\(=12.2n\)

\(=24n\)

Vì 24n chia hết cho 24 với mọi n

=> (n + 6)2 - (n - 6)2 chia hết cho 24 với mọi n thuộc Z (Đpcm)

b) P/s: Bài này cậu thiếu điều kiện n lẻ nên mình thêm vào mới giải được nha.

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+3\right)\left(n+1\right)\)

Vì n là số lẻ nên n = 2k + 1 ( k thuộc Z )

Thay n = 2k + 1 vào ta được

\(\left(n+3\right)\left(n+1\right)\)

\(=\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)\)

\(=4\left(k+2\right)\left(k+1\right)\)

Vì (k + 2)(k + 1) là tích của hai số liên tiếp

=> (k + 2)(k + 1) chia hết cho 2

=> 4(k + 2)(k + 1) chia hết cho 8

=> n2 + 4n + 3 chia hết cho 8 với mọi số nguyên n lẻ ( Đpcm )

c) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left[\left(n+3\right)-\left(n-1\right)\right]\left[\left(n+3\right)+\left(n-1\right)\right]\)

\(=\left(n+3-n+1\right)\left(n+3+n-1\right)\)

\(=4\left(2n+2\right)\)

\(=4.2\left(n+1\right)\)

\(=8\left(n+1\right)\)

Vì 8(n + 1) chia hết cho 8 với mọi n

=> (n + 3)2 - (n - 1)2 chia hết cho 8 với mọi n ( Đpcm )

Hà Khánh Ngân
Xem chi tiết
o0o I am a studious pers...
11 tháng 8 2016 lúc 16:58

\(n^3-n\)

\(n\left(n^2-1\right)\)

\(=n\left(n+1\right)\left(n-1\right)\)

Do \(n-1;n;n+1\)là 3 số tn liên tiếp \(\Rightarrow n\left(n+1\right)\left(n-1\right)\)chia hết cho 6

Trần Thị Thúy Hiền
Xem chi tiết
Isolde Moria
4 tháng 8 2016 lúc 17:41

\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)

\(=n^2+5n-n^2-2n+3n+6\)

\(=6n+6\)

\(=6\left(n+1\right)\) chia hết cho 6

=>\(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\) chia hết cho 6

Nguyễn Như Đạt
Xem chi tiết
doremon
24 tháng 5 2015 lúc 21:15

n3 + 11n = n- n + 12n = n(n2 - 1) + 12n= (n - 1)n(n + 1) + 12n
Vì n là số nguyên nên (n - 1)n(n + 1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6; mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6. 
Vậy (n - 1)n(n + 1) + 12n chia hết cho 6 => n3 + 11n chia hết cho 6 (đpcm) 

Bùi Đức Anh
11 tháng 8 2018 lúc 18:18

n 3 + 11n = n 3 ‐ n + 12n = n﴾n 2 ‐ 1﴿ + 12n= ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n

Vì n là số nguyên nên ﴾n ‐ 1﴿n﴾n + 1﴿ là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6

;mà 12 lại chia hết cho 6 => 12n cũng chia hết cho 6

Vậy ﴾n ‐ 1﴿n﴾n + 1﴿ + 12n chia hết cho 6 => n 3 + 11n chia hết cho 6 ﴾đpcm﴿

blackpink muôn năm
Xem chi tiết
Lil Học Giỏi
Xem chi tiết
Nguyễn Thanh Hằng
19 tháng 10 2019 lúc 11:59

Ta có :

\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)

Với mọi số nguyên n ta có :

+) \(n\left(n-1\right)\left(n+1\right)⋮6\) (tích của 3 số nguyên liên tiếp )

+) \(12n⋮6\)

\(\Leftrightarrow n\left(n-1\right)\left(n+1\right)-12n⋮6\)

\(\Leftrightarrow n^3-12n⋮6\left(đpcm\right)\)

Khách vãng lai đã xóa
Nguyễn Như Đạt
Xem chi tiết
Trần Thị Loan
24 tháng 5 2015 lúc 21:24

n(n+1)()2n+1) = n(n+1)(n+2 + n - 1) = n(n+1)(n+2) + (n-1).n.(n+1)

n(n+1)(n+2) ; (n-1).n.(n+1) đều là tích của 3 số tự nhiên liên tiếp nên các tích đó chia hết 6

=>  n(n+1)(n+2) + (n-1).n.(n+1) chia hết cho 6 

=> n(n+1)()2n+1) chia hết cho 6

Trương Quang Minh
12 tháng 12 2016 lúc 21:33

chứng minh n(n+5)(n+7) chia hết cho 6

Hà Minh Quang
9 tháng 1 2017 lúc 4:55

cậu làm thiếu rồi . cậu còn cần phải chứng minh tại sao 3 số tự nhiên liên tiếp chia hết cho 6

Nguyễn Hoài Nhật Linh
Xem chi tiết
Nguyễn Thùy Dương
23 tháng 10 2017 lúc 20:57

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^n.27+3^n.3+2^n.8+2^n.4\)

\(=3^n\left(27+3\right)+2^n\left(8+4\right)\)

\(=3^n.30+2^n.12⋮6\left(dpcm\right)\)

Nguyễn Nhã Linh
Xem chi tiết