Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pro No
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 1 2022 lúc 10:57

1.

Đặt \(x+y=a\Rightarrow y=a-x\)

\(\Rightarrow x^2+2x\left(a-x\right)-14\left(a-x\right)-10x+3\left(a-x\right)^2+27=0\)

\(\Leftrightarrow2x^2-4\left(a+1\right)x+3a^2-10a+27=0\)

\(\Delta'=4\left(a+1\right)^2-2\left(3a^2-10a+27\right)\ge0\)

\(\Leftrightarrow-a^2+14a-25\ge0\)

\(\Rightarrow7-2\sqrt{6}\le a\le7+2\sqrt{6}\)

\(\Rightarrow-10-2\sqrt{6}\le P\le-10+2\sqrt{6}\)

2. Chắc đề là \(a;b>0\) (đảm bảo mẫu dương) chứ ko phải \(a.b>4\)

\(M\ge\dfrac{\left(a+b\right)^2}{a+b-8}=\dfrac{\left(a+b-8+8\right)^2}{a+b-8}=\dfrac{\left(a+b-8\right)^2+16\left(a+b-8\right)+64}{a+b-8}\)

\(M\ge a+b-8+\dfrac{64}{a+b-8}+16\ge2\sqrt{\dfrac{64\left(a+b-8\right)}{a+b-8}}+16=32\)

Dấu "=" xảy ra khi \(a=b=8\)

Lizy
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 1 2024 lúc 21:52

\(P=\left(\dfrac{x}{2}+\dfrac{9}{2x}\right)+\left(\dfrac{y}{8}+\dfrac{2}{y}\right)+\left(\dfrac{z}{4}+\dfrac{9}{z}\right)+\dfrac{1}{8}\left(4x+7z+6z\right)\)

\(P\ge2\sqrt{\dfrac{9x}{4x}}+2\sqrt{\dfrac{2y}{8y}}+2\sqrt{\dfrac{9z}{4z}}+\dfrac{1}{8}.76=\dfrac{33}{2}\)

Dấu "=" xảy ra tại \(\left(x;y;z\right)=\left(3;4;6\right)\)

Chitanda Eru (Khối kiến...
Xem chi tiết
Nguyễn Việt Lâm
14 tháng 8 2021 lúc 8:33

\(2x-3\sqrt{x}+2=2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(\Rightarrow\dfrac{1}{2x-3\sqrt{x}+2}\le\dfrac{1}{\dfrac{7}{8}}=\dfrac{8}{7}\)

\(\Rightarrow\dfrac{-1}{2x-3\sqrt{x}+2}\ge-\dfrac{8}{7}\)

\(A_{min}=-\dfrac{8}{7}\) khi \(x=\dfrac{9}{16}\)

Chitanda Eru (Khối kiến...
14 tháng 8 2021 lúc 8:41

Ta thấy:\(2x-3\sqrt{x}+2=2\left(x-\dfrac{3}{2}\sqrt{x}+1\right)\)\(=2\left(x-2.\dfrac{3}{4}\sqrt{x}+\dfrac{9}{16}+\dfrac{7}{16}\right)=2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\)

Vì \(2\left(\sqrt{x}-\dfrac{3}{4}\right)^2\ge0\) với \(\forall x\ge0\) nên \(2\left(\sqrt{x}-\dfrac{3}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)với \(\forall x\ge0\) 

\(\Rightarrow\dfrac{1}{2x-3\sqrt{x}+2}\le\dfrac{7}{8}\)với \(\forall x\ge0\) 

\(\Rightarrow A=\dfrac{-1}{2x-3\sqrt{x}+2}\ge-\dfrac{7}{8}\)với \(\forall x\ge0\) 

Dấu "=" xảy ra khi và chỉ khi \(\sqrt{x}-\dfrac{3}{4}=0\Leftrightarrow\sqrt{x}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\) 

xin lỗi nha bài này tui gửi nhầm lên đây nên đừng nói tui tự làm tự giải kiếm điểm nhá

Lê Thị Thu Huyền
Xem chi tiết
Eren
25 tháng 12 2018 lúc 21:23

Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0

=> C ≥ 0

Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7

C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4

Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5

Eren
25 tháng 12 2018 lúc 22:11

\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)

Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)

Eren
26 tháng 12 2018 lúc 20:49

Cô - si cho 5 số lên mạng search cách chứng minh nhé

\(G=\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{x^3}+\dfrac{1}{x^3}\ge5\sqrt[5]{\dfrac{1}{3^3}.\dfrac{x^2.x^2.x^2}{x^3.x^3}}=5\sqrt[5]{\dfrac{1}{27}}\)

Dấu "=" xảy ra <=> \(\dfrac{1}{3}x^2=x^3\)

<=> \(x^5=3\)

<=> \(x=\sqrt[5]{3}\)

Lizy
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 1 2024 lúc 21:43

\(B=\dfrac{x^2+x}{x^2+x+1}=\dfrac{3x^2+3x}{3\left(x^2+x+1\right)}=\dfrac{-\left(x^2+x+1\right)+4x^2+4x+1}{3\left(x^2+x+1\right)}\)

\(=-\dfrac{1}{3}+\dfrac{\left(2x+1\right)^2}{3\left(x+\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge-\dfrac{1}{3}\)

\(B_{min}=-\dfrac{1}{3}\) khi \(x=-\dfrac{1}{2}\)

Minz Ank
Xem chi tiết
Yeutoanhoc
2 tháng 3 2023 lúc 21:08

`P=x^3/(x+y)+y^3/(y+z)+z^3/(z+x)`

`=x^4/(x^2+xy)+y^4/(y^2+yz)+z^4/(z^2+zx)`

Ad bđt cosi-swart:

`P>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+xy+yz+zx)`

Mà `xy+yz+zx<=x^2+y^2+z^2)`

`=>P>=(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2))=(x^2+y^2+z^2)/2=3/2`

Dấu "=" xảy ra khi `x=y=z=1`

`Q=(x^3+y^3)/(x+2y)+(y^3+z^3)/(y+2z)+(z^3+x^3)/(z+2x)`

`Q=(x^3/(x+2y)+y^3/(y+2z)+z^3/(z+2x))+(y^3/(x+2y)+z^3/(y+2z)+x^3/(z+2x))`

`Q=(x^4/(x^2+2xy)+y^4/(y^2+2yz)+z^4/(z^2+2zx))+(y^4/(xy+2y^2)+z^4/(yz+2z^4)+x^4/(xz+2x^2))`

Áp dụng BĐT cosi-swart ta có:

`Q>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+2xy+2yz+2zx)+(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2)+xy+yz+zx))`

Mà`xy+yz+zx<=x^2+y^2+z^2`

`=>Q>=(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))+(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2)^2)/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2))/3=2`

Dấu "=" xảy ra khi `x=y=z=1.`

Thơ Nụ =))
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 1 2024 lúc 20:38

\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)

\(P_{max}=\dfrac{1}{5}\) khi \(x+1=0\Rightarrow x=-1\)

\(Q=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4\left(x+1\right)^2}=\dfrac{3\left(x^2+2x+1\right)+x^2-2x+1}{4\left(x+1\right)^2}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4\left(x+1\right)^2}\)

\(Q_{min}=\dfrac{3}{4}\) khi \(x-1=0\Rightarrow x=1\)

Nguyễn Lê Phước Thịnh
21 tháng 1 2024 lúc 20:36

1: \(x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5>=5\forall x\)

=>\(P=\dfrac{1}{x^2+2x+6}< =\dfrac{1}{5}\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

 

Minh Bình
Xem chi tiết
乇尺尺のレ
28 tháng 8 2023 lúc 20:31

\(a)ĐK:x\ge-1\\ \Leftrightarrow x+1=2\sqrt{x+1}\\ \Leftrightarrow x^2+2x+1=4x+4\\ \Leftrightarrow x^2+2x-4x+1-4=0\\ \Leftrightarrow x^2-2x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{3;-1\right\}\)

\(b)ĐK:x\ge2\\ \Leftrightarrow2x-4=\sqrt{x-2}\\ \Leftrightarrow4x^2-16x+16=x-2\\ \Leftrightarrow4x^2-16x-x+16+2=0\\ \Leftrightarrow4x^2-17x+18=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{\dfrac{9}{4};2\right\}\)

\(c)ĐK:x\ge3\\ \Leftrightarrow2\sqrt{9\left(x-3\right)}-\dfrac{1}{5}\sqrt{25\left(x-3\right)}-\dfrac{1}{7}\sqrt{49\left(x-3\right)}=20\\ \Leftrightarrow2.3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=20\\ \Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\\ \Leftrightarrow4\sqrt{x-3}=20\\ \Leftrightarrow\sqrt{x-3}=5\\ \Leftrightarrow x-3=25\\ \Leftrightarrow x=25+3\\ \Leftrightarrow x=28\left(tm\right)\)

Vậy \(S=\left\{28\right\}\)

Nguyễn Lê Phước Thịnh
28 tháng 8 2023 lúc 20:18

loading...  loading...  

Nguyễn Hoàng Vũ
Xem chi tiết
Lương Khánh Nhật Minh
17 tháng 4 2022 lúc 0:42

1. 1/x + 2/1-x = (1/x - 1) + (2/1-x - 2) + 3

= 1-x/x + (2-2(1-x))/1-x  + 3

= 1-x/x + 2x/1-x + 3    >= 2√2 + 3

Dấu "=" xảy ra khi x =√2 - 1

Lương Khánh Nhật Minh
17 tháng 4 2022 lúc 0:48

2. a = √z-1, b = √x-2, c = √y-3 (a,b,c >=0)

=> P = √z-1 / z + √x-2 / x + √y-3 / y 

= a/a^2+1 + b/b^2+2 + c/c^2+3

a^2+1 >= 2a              => a/a^2+1 <= 1/2

b^2+2 >= 2√2 b          => b/b^2+2 <= 1/2√2

c^2+3 >= 2√3 c            => c/c^2+3 <= 1/2√3

=> P <= 1/2 + 1/2√2 + 1/2√3

Dấu = xảy ra khi a^2 = 1, b^2 = 2, c^2 =3

<=> z-1 = 1, x-2 = 2, y-3 = 3

<=> x=4, y=6, z=2