Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn quỳnh lưu
Xem chi tiết
alibaba nguyễn
3 tháng 7 2017 lúc 15:41

M không tồn tại thì làm sao mà rút gọn được

nguyễn quỳnh lưu
4 tháng 7 2017 lúc 22:37

được bạn ạ mình nhờ thầy giải ra mà bạn tính máy tính mới ko ra thôi

alibaba nguyễn
4 tháng 7 2017 lúc 22:44

Thầy nào mà giải được cái này ghê vậy. Cái căn thứ 2 số trong căn là số âm mà cũng căn được ah. Thầy bạn có đọc đề không thế???

Hoàng Tiến Long
Xem chi tiết
Quynh Existn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2021 lúc 0:31

d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)

\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)

\(=\dfrac{3\sqrt{x}}{x-3}\)

f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)

\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)

\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)

anhquan
Xem chi tiết
An Thy
7 tháng 7 2021 lúc 10:17

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)

Trúc Giang
7 tháng 7 2021 lúc 10:18

\(=\left[\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)=-3\)

Quynh Existn
Xem chi tiết
Nguyễn Huy Tú
21 tháng 7 2021 lúc 19:00

undefined

gh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 10 2020 lúc 20:38

a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{2^2\cdot3}-\sqrt{3^2}\)

\(=2-\sqrt{3}+2\sqrt{3}-3\)

\(=\sqrt{3}-1\)

b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right)\cdot\sqrt{2}+\sqrt{108}\)

\(=\sqrt{16}-3\sqrt{12}+\sqrt{4}+\sqrt{6^2\cdot3}\)

\(=4-3\sqrt{2^2\cdot3}+2+6\sqrt{3}\)

\(=6-3\cdot2\sqrt{3}+6\sqrt{3}\)

\(=6-6\sqrt{3}+6\sqrt{3}=6\)

Khách vãng lai đã xóa
Nobi Nobita
26 tháng 10 2020 lúc 20:40

a) \(\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{12}-\sqrt{\left(-3\right)^2}\)

\(=\left|\sqrt{3}-2\right|+\sqrt{3.4}-\sqrt{3^2}=2-\sqrt{3}+\sqrt{4}.\sqrt{3}-3\)

\(=2-\sqrt{3}+2\sqrt{3}-3=\sqrt{3}-1\)

b) \(\left(\sqrt{8}-3\sqrt{6}+\sqrt{2}\right).\sqrt{2}+\sqrt{108}\)

\(=\sqrt{8}.\sqrt{2}-3\sqrt{6}.\sqrt{2}+\sqrt{2}.\sqrt{2}+\sqrt{108}\)

\(=\sqrt{8.2}-3\sqrt{6.2}+2+\sqrt{36.3}\)

\(=\sqrt{16}-3\sqrt{12}+2+\sqrt{36}.\sqrt{3}\)

\(=\sqrt{4^2}-3\sqrt{4.3}+2+6\sqrt{3}\)

\(=4-3\sqrt{4}.\sqrt{3}+2+6\sqrt{3}\)

\(=4-6\sqrt{3}+2+6\sqrt{3}=6\)

Khách vãng lai đã xóa
Huỳnh Như
Xem chi tiết
Mostost Romas
Xem chi tiết
Nhi Quỳnh
Xem chi tiết
HT.Phong (9A5)
2 tháng 11 2023 lúc 16:00

a) \(2\sqrt{32}+3\sqrt{72}-7\sqrt{50}+\sqrt{2}\)

\(=2\cdot4\sqrt{2}+3\cdot6\sqrt{2}-7\cdot5\sqrt{2}+\sqrt{2}\)

\(=8\sqrt{2}+18\sqrt{2}-35\sqrt{2}+\sqrt{2}\)

\(=-8\sqrt{2}\) 

b) \(\sqrt{\left(3-\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\left|3-\sqrt{3}\right|+\left|2-\sqrt{3}\right|\)

\(=3-\sqrt{3}+\sqrt{3}-2\)

\(=1\)

c) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\)

\(=\sqrt{3^2+2\cdot3\cdot\sqrt{2}+\left(\sqrt{2}\right)^2}-3+\sqrt{2}\)

\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)

\(=3+\sqrt{2}-3+\sqrt{2}\)

\(=2\sqrt{2}\)

d) \(x-4+\sqrt{16-8x+x^2}\left(x>4\right)\)

\(=x-4+\sqrt{x^2-8x+16}\)

\(=x-4+\sqrt{\left(x-4\right)^2}\)

\(=x-4+\left|x-4\right|\)

\(=x-4+x-4\)

\(=2x-8\) 

e) \(\dfrac{1}{a-b}\sqrt{a^4\left(a-b\right)^2}\left(a< b\right)\)

\(=\dfrac{1}{a-b}\sqrt{\left[a^2\left(a-b\right)\right]^2}\)

\(=\dfrac{1}{a-b}\left|a^2\left(a-b\right)\right|\)

\(=\dfrac{-a^2\left(a-b\right)}{a-b}\)

\(=-a^2\)