Rút gọn và tính gtbt tại x=1
(x+1)(x^2-x+1)-(x-1)(x^2+x+1)-3(x-2)
Rút gọn và tính GTBT
A= (2x - 3y)2 -( x-y)3 -4x2 - y3 +3xy.(y-x) tại x =2 , y= -1
A=(2x-3y)2-(x-y)3-4x2-y3+3xy(y-x)=4x2-12xy+9y2-x3+3x2y-3xy2+y3-4x2-y3+3xy2-3x2y=9y2-12xy-x3
Thay x=2 và y=-1 vào A.Ta có:A=9.(-1)2-12.2.(-1)-23=7
\(A=\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
a) Rút gọn biểu thức
b) Tính GTBT A khi x = 17 - 12√2
Rút gọn rồi tính GTBT:
\(A=\dfrac{\left(x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\) với \(x=\dfrac{1}{2}\)
\(A=\frac{\left(x^2+2x\right).\left(x-2\right)^2}{\left(x^3-4x\right).\left(x+1\right)}\)
\(A=\frac{\left(x^2+2x\right).\left(x^2-4x+4\right)}{\left(x^3-4x\right).\left(x+1\right)}=\frac{x^4-4x^3+4x^2+2x^3-8x^2+8x}{x^4+x^3-4x^2-4x}\)
\(A=\frac{x^4-2x^3-4x^2+8x}{x^4+x^3-4x^2-4x}=\frac{x^3.\left(x-2\right)-4x.\left(x-2\right)}{x^3.\left(x+1\right)-4x.\left(x+1\right)}=\frac{\left(x^3-4x\right).\left(x-2\right)}{\left(x^3-4x\right).\left(x+1\right)}=\frac{x-2}{x+1}\)
thay \(x=\frac{1}{2}\Rightarrow A=\frac{\frac{1}{2}-2}{\frac{1}{2}+1}=\frac{-\frac{3}{2}}{\frac{3}{2}}=-1\)
Vậy A=-1
Cho biểu thức C = (\(\dfrac{x}{x^2-x-6}\)-\(\dfrac{x-1}{3x^2-4x-15}\)) : \(\dfrac{x^4-2x^2+1}{3x^2+11x+10}\).(\(x^2\)-\(2x\)+1)
a) Rút gọn C
b)Tìm GTBT C với x = 2003
c) CMR C>0 khi x>3
a) \(C=\left(\dfrac{x}{x^2-x-6}-\dfrac{x-1}{3x^2-4x-15}\right):\dfrac{x^4-2x^2+1}{3x^2+11x+10}\cdot\left(x^2-2x+1\right)\) (ĐK: \(x\ne-\dfrac{5}{3};x\ne3;x\ne-2;x\ne1\))
\(C=\left[\dfrac{x}{\left(x-3\right)\left(x+2\right)}-\dfrac{x-1}{\left(x-3\right)\left(3x+5\right)}\right]:\dfrac{\left(x^2-1\right)^2}{\left(3x+5\right)\left(x+2\right)}\cdot\left(x-1\right)^2\)
\(C=\left[\dfrac{x\left(3x+5\right)}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(3x+5\right)\left(x+2\right)}\right]\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)
\(C=\dfrac{3x^2+5x-x^2-2x+x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x^2-1\right)^2\left(x-1\right)^2}\)
\(C=\dfrac{2x^2+4x+2}{\left(3x+5\right)\left(x+2\right)\left(x-3\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)
\(C=\dfrac{2\left(x+1\right)^2}{\left(3x+5\right)\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(3x+5\right)\left(x+2\right)}{\left(x+1\right)^2\left(x-1\right)^4}\)
\(C=\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}\)
b) Thay x = 2003 ta có:
\(C=\dfrac{2}{\left(2003-1\right)^4\left(2003-3\right)}=\dfrac{2}{2002^4\cdot2000}=\dfrac{1}{2002^4\cdot1000}\)
c) \(C>0\) khi:
\(\dfrac{2}{\left(x-1\right)^4\left(x-3\right)}>0\) mà: \(\left\{{}\begin{matrix}2>0\\\left(x-1\right)^4>0\end{matrix}\right.\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\) (đpcm)
a)Tìm x biết: x(x+10)-x-10=0
b)Rút gọn và tính giá trị biểu thức tại x=1/13; A=(x-1)(x^2+x+1)-(x+5)(x^2-3)-5(x+1)^2
a: =>(x+10)(x-1)=0
=>x=-10 hoặc x=1
b: \(A=x^3-1-\left(x+5\right)\left(x^2-3\right)-5x^2-10x-5\)
\(=x^3-5x^2-10x-6-x^3+3x-5x^2+15\)
=-7x+9
=110/13
Rút gọn biểu thứ sau và tính giá trị biểu thức:
a) (2x+3)^2+(2x-3)^2-(2x+3)(4x-6)+xy tại x=2; y=-1
b)(x-2)^2-(x-1)(x+1)-x(1-x) tại x= -2
\(a)\)
\(\left(2x+3\right)^2+\left(2x-3\right)^2-\left(2x+3\right)\left(4x-6\right)+xy\)
\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-3\right)+\left(2x-3\right)^2+xy\)
\(=\left(2x+3-2x+3\right)^2+xy\)
\(=6^2+2\left(-1\right)\)
\(=36-2\)
\(=34\)
\(b)\)
\(\left(x-2\right)^2-\left(x-1\right)\left(x+1\right)-x\left(1-x\right)\)
\(=x^2-4x+4-x^2+1-x+x^2\)
\(=x^2-5x+5\)
Thay \(x=-2\)vào ta có:
\(\left(-2\right)^2-5\left(-2\right)+5\)
\(=4+10+5\)
\(=19\)
Cho biểu thức: A = \(\dfrac{1}{x-1}+\dfrac{x}{x^2-1}\)và B = \(\dfrac{x^2-x}{2x+1}\) (x ≠ -\(\dfrac{1}{2}\),x ≠ 1)
a) Tính giá trị của B tại x = 3
b) Rút gọn M = A.B
c) Tìm x để M = \(\dfrac{1}{3}\)
`a,` Với `x=3`
\(B=\dfrac{x^2-x}{2x+1}\\ \Rightarrow\dfrac{3^2-3}{2\cdot3+1}\\ =\dfrac{9-3}{6+1}\\ =\dfrac{6}{7}\)
`b,` Ta có `M=A*B`
\(M=\left(\dfrac{1}{x-1}+\dfrac{x}{x^2-1}\right)\cdot\dfrac{x^2-x}{2x+1}\\ =\left(\dfrac{1}{x-1}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{x\left(x-1\right)}{2x+\text{ }1}\\ =\left(\dfrac{x+1}{\left(x-1\right)\left(x+1\right)}+\dfrac{x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{2x+1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x\left(x-1\right)}{2x+1}\\ =\dfrac{x}{x+1}\)
`c,` Để `M=1/2`
`=> x/(x+1)=1/3`
`<=> (3x)/(3(x+1))= (x+1)/(3(x+1))`
`<=> 3x=x+1`
`<=>3x-x=1`
`<=>2x=1`
`<=>x=1/2`
Rút gọn rồi tính gtbt sau:
\(\frac{\left(2x^3+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\) với giá trị tuyệt đối của x = \(\frac{1}{2}\)
\(\frac{\left(2x^3+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)
\(=\frac{2x\left(x^2+1\right)\left(x-2\right)^2}{x\left(x-2\right)\left(x+2\right)\left(x+1\right)}\)
\(=\frac{2\left(x^2+1\right)\left(x-2\right)}{\left(x+2\right)\left(x+1\right)}\)
Thay x=\(\frac{1}{2}\)
\(=\frac{2\left(\frac{1}{2}^2+1\right)\left(\frac{1}{2}-2\right)}{\left(\frac{1}{2}+2\right)\left(\frac{1}{2}+1\right)}\)
\(=-1\)
rút gọn rồi tính giá trị biểu thức
A = ( x - y )2 + ( x + y )2 - x( 2x + 1 ) tại x = 2 ; y = - 3
B = ( x + 3 )2 + ( x + 3 )( x - 3 ) - ( x + 2 )( 2x - 8 ) tại x = -1/2
a: \(A=x^2-2xy+y^2+x^2+2xy+y^2-2x^2-x\)
=-x
=-2