Cho x+y+z=0 và xy+yz+zx=0
Tính S=(x-1)1999+y2003+(z+1)2006
CHO \(x+y+z=0\) và \(xy+yz+zx=0\)
TÍNH \(S=\left(x-1\right)^{1999}+y^{2003}+\left(z+1\right)^{2006}\)
Giúp mình vs các bạn
\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
<=> \(x^2+y^2+z^2=0\Leftrightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
Thay vào tính S:\(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=-1+1=0\)
cho 3 số tự nhiên a b c thỏa mãn x+y+z=0 và xy+yz+zx=0. hãy tính gt của bt s =(x-1)^2005+(y-1)^2006+(z+1)^2007
Ta có :\(x+y+z=0\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2xz=0\)
\(\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=x^2+y^2+z^2=0\) (do xy + yz + xz = 0)
Ta lại thấy \(x^2;y^2;z^2\ge0\forall x;y;z\) nên \(x^2+y^2+z^2\ge0\forall x;y;z\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\) thay vào S ta được :
\(S=\left(-1\right)^{2005}+\left(-1\right)^{2006}+1^{2007}=1\)
cho x+y+z=0
Tính GTBT: xy/(x^2+y^2-z^2)+yz/(y^2+z^2-x^2)+zx/(z^2+x^2-y^2)
\(x+y+z=0\\ \Rightarrow\left\{{}\begin{matrix}x=-y-z\\y=-z-x\\z=-x-y\end{matrix}\right.\)
\(\dfrac{xy}{x^2+y^2-z^2}+\dfrac{yz}{y^2+z^2-x^2}+\dfrac{zx}{z^2+x^2-y^2}\)
\(=\dfrac{xy}{x^2+y^2-\left(-x-y\right)^2}+\dfrac{yz}{y^2+z^2-\left(-y-z\right)^2}+\dfrac{zx}{z^2+x^2-\left(-z-x\right)^2}\)
\(=\dfrac{xy}{x^2+y^2-\left(x+y\right)^2}+\dfrac{yz}{y^2+z^2-\left(y+z\right)^2}+\dfrac{zx}{z^2+x^2-\left(z+x\right)^2}\)
\(=\dfrac{xy}{x^2+y^2-x^2-2xy-y^2}+\dfrac{yz}{y^2+z^2-y^2-2yz-z^2}+\dfrac{zx}{z^2+x^2-z^2-2zx-x^2}\)
\(=\dfrac{xy}{-2xy}+\dfrac{yz}{-2yz}+\dfrac{zx}{-2zx}\)
\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}\)
\(=-\dfrac{3}{2}\)
Cho 3 số x y z thỏa mãn điều kiện x + y + z bằng 0 và xy+yz+zx=0.tính giá trị của biểu thức: S=(x-1)2005+(y-1)2006+(z+1)2007
Vì x+y+z=0;xy+yz+xz=0
⇒(x+y+z)2=x2+y2+z2+2(xy+yz+xz)=0
⇒(x+y+z)2=x2+y2+z2=0
⇒x=y=z=0
⇒S=(x−1)2005+(y−1)2006+(z+1)2007=(−1)2005+(−1)2006+12007=1
cho x,y,z>0 và x+y+z=1 chứng minh\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge1+\sqrt{xy}\sqrt{yz}+\sqrt{zx}\)
1,Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Chứng minh rằng : (x2y2 + y2z2 + z2x2)2 = 2(x4y4 + y4z4 +z4x4)
2, cho x+y+z =0
và xy + yz + zx =0
Tính S = (x - 1)1999 + y2003 + (z + 1)2006
Ta có: \(x+y+z=0\)
\(\Leftrightarrow\) \(\left(x+y+z\right)^2=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow\)\(x^2+y^2+z^2=0\) (vì xy + yz + xz =0)
\(\Leftrightarrow\)\(x=y=z=0\)
Vậy \(S=\left(0-1\right)^{1999}+0^{2003}+\left(0+1\right)^{2006}=0\)
Cho x,y,z thỏa mãn: x + y + z = 0 và xy + yz + zx = 0. Tính:
S = (x - 1)1995 + y1996 + (z + 1)1997
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
Cho x,y,z thỏa mãn: x + y + z = 0 và xy + yz + zx = 0. Tính: S = (x - 1)1995 + y1996 + (z + 1)1997
nói chứ toán của anh choa đăng cho vi hihi
Cho x; y; z >0, thoả mãn: 1/xy+ 1/yz+1/zx =1
Q= x/√yz × (x^2 +1)+ y/√zx × (y^2 +1) + z/√xy × ( z^2 +1)