\(\dfrac{15}{7}\) : (-10)
So sánh không qua quy đồng:\(A=\dfrac{-7}{10^{2005}}+\dfrac{-15}{10^{2006}};\) \(B=\dfrac{-15}{10^{2005}}+\dfrac{-7}{10^{2006}}\)
Mik nghĩ bài này nếu quy đồng mẫu của cả A và B thì chúng sẽ có cùng chung mẫu vì đều là 10^2005 và 10^2006.
Như vậy nếu cộng tử số của cả A và B thì A và B sẽ bằng nhau.=>A và B bằng nhau
Đây chỉ là suy nghĩ của mình thôi vì mik chx lm bài này bao h
So sánh không qua quy đồng: \(A=\dfrac{-7}{10^{2005}}+\dfrac{-15}{10^{2006}};B=\dfrac{-15}{10^{2005}}+\dfrac{-7}{10^{2006}}\)
tham khảo
https://hoc24.vn/cau-hoi/so-sanh-ko-qua-quy-donga-7102005-15102006b-15102005-7102006.78462087582#:~:text=%3D%3EA%3D,%3D%3EA%3CB
Cho N=\(\dfrac{-7}{10^{2015}}\)+\(\dfrac{-15}{10^{2006}}\)và M=\(\dfrac{-15}{10^{2005}}\)+\(\dfrac{-7}{10^{2006}}\)
So sánh M và N (heo mì) TvT
Ta có :
\(N=\dfrac{-7}{10^{2005}}+\dfrac{-15}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-7}{10^{2006}}+\dfrac{-8}{10^{2006}}=-7\left(\dfrac{1}{10^{2005}}+\dfrac{1}{10^{2006}}\right)+\dfrac{-8}{10^{2006}}\)
\(M=\dfrac{-15}{10^{2005}}+\dfrac{-7}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-8}{10^{2005}}+\dfrac{-7}{10^{2006}}=-7\left(\dfrac{1}{10^{2005}}+\dfrac{1}{10^{2006}}\right)+\dfrac{-8}{10^{2005}}\)
Lại có :
\(-\dfrac{8}{10^{2006}}>\dfrac{-8}{10^{2005}}\Leftrightarrow M>N\)
Tính rồi rút gọn (theo mẫu):
Mẫu: \(\dfrac{9}{10}-\dfrac{4}{10}=\dfrac{9-4}{10}=\dfrac{5}{10}=\dfrac{1}{2}\) |
a) \(\dfrac{15}{8}-\dfrac{13}{8}\) b) \(\dfrac{7}{15}-\dfrac{2}{15}\) c) \(\dfrac{11}{12}-\dfrac{2}{12}\) d) \(\dfrac{19}{7}-\dfrac{5}{7}\)
a: \(\dfrac{15}{8}-\dfrac{13}{8}=\dfrac{15-13}{8}=\dfrac{2}{8}=\dfrac{1}{4}\)
b: \(\dfrac{7}{15}-\dfrac{2}{15}=\dfrac{7-2}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
c: \(\dfrac{11}{12}-\dfrac{2}{12}=\dfrac{11-2}{12}=\dfrac{9}{12}=\dfrac{3}{4}\)
d: \(\dfrac{19}{7}-\dfrac{5}{7}=\dfrac{19-5}{7}=\dfrac{14}{7}=2\)
So sánh
N=\(\dfrac{-7}{10^{2005}}+\dfrac{-15}{10^{2006}}\)
M=\(\dfrac{-15}{10^{2005}}+\dfrac{-7}{10^{2006}}\)
Lời giải:
Ta có:
\(N=\dfrac{-7}{10^{2005}}+\dfrac{-15}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-7}{10^{2006}}+\dfrac{-8}{10^{2006}}\)
\(M=\dfrac{-15}{10^{2005}}+\dfrac{-7}{10^{2006}}=\dfrac{-7}{10^{2005}}+\dfrac{-8}{10^{2005}}+\dfrac{-7}{10^{2006}}\)
Xét \(N\) và \(M\) có \(\dfrac{-7}{10^{2005}}+\dfrac{-7}{10^{2006}}\) chung.
Mà \(\dfrac{-8}{10^{2005}}>\dfrac{-8}{10^{2006}}\) nên \(N>M\).
8. \(\dfrac{-5}{9}\) + \(\dfrac{8}{15}\) + \(\dfrac{-2}{11}\) + \(\dfrac{4}{-9}\) + \(\dfrac{7}{15}\)
9. \(\dfrac{2}{7}\) + (\(\dfrac{-2}{5}\) + \(\dfrac{5}{7}\))
10. \(\dfrac{7}{19}\). \(\dfrac{8}{11}\) + \(\dfrac{3}{11}\).\(\dfrac{7}{19}\)+\(\dfrac{-12}{19}\)
11. \(\dfrac{-5}{7}\).\(\dfrac{2}{11}\) + \(\dfrac{-5}{7}\).\(\dfrac{9}{11}\)
12. \(\dfrac{-5}{13}\) + \(\dfrac{5}{7}\) + \(\dfrac{20}{41}\) + \(\dfrac{-8}{13}\) + \(\dfrac{21}{41}\)
Giúp tớ với ạ! Tớ cảm ơn! Các cậu chỉ cần ghi đáp án cuối cùng thôi ạ! Cảm ơn các cậu<3
8: \(=\dfrac{-5}{9}-\dfrac{4}{9}+\dfrac{8}{15}+\dfrac{7}{15}-\dfrac{2}{11}=\dfrac{-2}{11}\)
9: =2/7-2/5+5/7=1-2/5=3/5
10: \(=\dfrac{7}{19}\left(\dfrac{8}{11}+\dfrac{3}{11}\right)-\dfrac{12}{19}=\dfrac{-5}{19}\)
11: \(=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)=\dfrac{-5}{7}\)
8 = -2/11
9 = 3/5
10 = -5/19
11 = -5/7
11 = 5/13
\(\dfrac{a}{b}\)x \(\dfrac{7}{15}\) + \(\dfrac{8}{15}\)x \(\dfrac{a}{b}\)+ \(\dfrac{a}{b}\) x 10 - \(\dfrac{a}{b}\)= \(\dfrac{5}{7}\)
\(\Leftrightarrow\dfrac{a}{b}\left(\dfrac{7}{15}+\dfrac{8}{15}+10-1\right)=\dfrac{5}{7}\)
=>a/b=5/70=1/14
tính
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
b)\(\dfrac{3}{14}:\dfrac{1}{28}-\dfrac{13}{21}:\dfrac{1}{28}+\dfrac{29}{42}:\dfrac{1}{28}-8\)
c)\(-1\dfrac{5}{7}.15+\dfrac{2}{7}\left(-15\right)+\left(-105\right).\left(\dfrac{2}{3}-\dfrac{4}{5}+\dfrac{1}{7}\right)\)
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
c; C = -1\(\dfrac{5}{7}\).15 + \(\dfrac{2}{7}\)(-15) + (-105).(\(\dfrac{2}{3}\) - \(\dfrac{4}{5}\) + \(\dfrac{1}{7}\))
C = - 15.(- 1 - \(\dfrac{5}{7}\) + \(\dfrac{2}{7}\) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\) + \(1\))
C = -15.[(1 - 1) - (\(\dfrac{5}{7}\) - \(\dfrac{2}{7}\)) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\)]
C = -15.[0 - \(\dfrac{3}{7}\) + \(\dfrac{14}{3}\) - \(\dfrac{28}{5}\)]
C = -15 . [- \(\dfrac{45}{105}\) + \(\dfrac{490}{105}\) - \(\dfrac{588}{105}\)]
C = -15. [ \(\dfrac{445}{105}\) - \(\dfrac{588}{105}\)]
C = - 15.(- \(\dfrac{143}{105}\))
C = \(\dfrac{143}{7}\)
Số?
a) \(\dfrac{7}{15}+\dfrac{?}{15}=\dfrac{10}{15}\) b) \(\dfrac{9}{8}+\dfrac{2}{?}=\dfrac{11}{8}\) c) \(\dfrac{6}{21}+\dfrac{9}{21}=\dfrac{15}{?}\)
a) \(\dfrac{7}{15}+\dfrac{3}{15}=\dfrac{10}{15}\)
b) \(\dfrac{9}{8}+\dfrac{2}{8}=\dfrac{11}{8}\)
c) \(\dfrac{6}{21}+\dfrac{9}{21}=\dfrac{15}{21}\)
>; <; =?
\(\dfrac{7}{12}\) ... \(\dfrac{5}{12}\) \(\dfrac{2}{5}\) ... \(\dfrac{6}{15}\) \(\dfrac{7}{10}\) ... \(\dfrac{7}{9}\).
\(\dfrac{7}{12}>\dfrac{5}{12}\) (Vì tử số 7>5; phân số cùng mẫu số)
\(\dfrac{2}{5}=\dfrac{2.3}{5.3}=\dfrac{6}{15}\) -> Điền dấu "="
\(\dfrac{7}{10}< \dfrac{7}{9}\) (Vì phân số cùng tử, phân số nào có mẫu số lớn hơn thì phân số đó bé hơn. Ta có: 10>9 => 7/10 < 7/9)
\(\dfrac{7}{12}>\dfrac{5}{12}\)
\(\dfrac{2}{5}=\dfrac{6}{15}\)
\(\dfrac{7}{10}< \dfrac{7}{9}\)