Giải các phương trình:
1. 𝑥^4 − 5𝑥 ^2 + 4 = 0
1) (𝑥 + 7)2 − 𝑥(𝑥 − 3) = 15 2) (2𝑥 + 3)2 − 4𝑥(𝑥 + 2) = 13 3) (3 − 𝑥)2 − (𝑥 − 2)(𝑥 + 1) = 21 4) (𝑥 − 2)2 − (𝑥 + 1)(𝑥 + 3) = −7 5) (𝑥 + 3)(4 − 𝑥) + (𝑥 + 1)(𝑥 − 1) = 10 6) (𝑥 + 1)2 − (𝑥 − 2)(𝑥 + 2) = 13 7) (5𝑥 − 1)(5𝑥 + 1) = 25𝑥2 − 7𝑥 + 15 8) (2𝑥 − 3)2 = 4(𝑥 − 3)(𝑥 + 3) − 4 . Số 2 ở sau là mũ 2 nhé, giải giúp mình vs
???????????????????????
Giải dùm mình bài này ạ. Mình cảm ơn
BÀI 2: Phân tích đa thức thành nhân tử (2 điểm)
a) 5𝑥^4 − 𝑥^3 + 7𝑥
b) 5𝑥(𝑥 − 𝑦) − 4𝑦(𝑦 − 𝑥)
c) 𝑥^2 − 5𝑥 + 6
a: \(5x^4-x^3+7x\)
\(=x\left(5x^3-x^2+7\right)\)
c: \(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)
a) \(=x\left(5x^3-x^2+7\right)\)
b) \(=\left(5x+4y\right)\left(x-y\right)\)
c) \(\left(x^2-2x\right)-\left(3x-6\right)=\left(x-2\right)\left(x-3\right)\)
a) \(5x^4-x^3+7x=x\left(5x^3-x^2+7\right)\)
b) \(5x\left(x-y\right)-4y\left(y-x\right)=5x\left(x-y\right)+4y\left(x-y\right)=\left(x-y\right)\left(5x+4y\right)\)
c) \(x^2-5x+6=x^2-2x-3x+6=\left(x^2-2x\right)-\left(3x-6\right)=x\left(x-2\right)-3\left(x-2\right)=\left(x-3\right)\left(x-2\right)\)
(5𝑥−1)(𝑥+3)−(𝑥−2)(5𝑥−4)
5x2 + 15x - x - 3 - 5x2 + 4x + 10x - 8 = 28x -11
\(\left(5x-1\right)\left(x+3\right)-\left(x-2\right)\left(5x-4\right)\)
\(=5x^2+14x-3-5x^2+14x-8\)
\(=28x-11\)
1) Làm tính nhân
a) 𝑥.(𝑥^2–5)
b) 3𝑥𝑦(𝑥^2−2𝑥^2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥^2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
Bài 1:
a. $x(x^2-5)=x^3-5x$
b. $3xy(x^2-2x^2y+3)=3x^3y-6x^3y^2+9xy$
c. $(2x-6)(3x+6)=6x^2+12x-18x-36=6x^2-6x-36$
d.
$(x+3y)(x^2-xy)=x^3-x^2y+3x^2y-3xy^2=x^3+2x^2y-3xy^2$
Bài 2:
a.
\((2x+5)(2x-5)=(2x)^2-5^2=4x^2-25\)
b.
\((x-3)^2=x^2-6x+9\)
c.
\((4+3x)^2=9x^2+24x+16\)
d.
\((x-2y)^3=x^3-6x^2y+12xy^2-8y^3\)
e.
\((5x+3y)^3=(5x)^3+3.(5x)^2.3y+3.5x(3y)^2+(3y)^3\)
\(=125x^3+225x^2y+135xy^2+27y^3\)
f.
\((5-x)(25+5x+x^2)=5^3-x^3=125-x^3\)
Bài 3:
a. $x^2+2x=x(x+2)$
b. $x^2-6x+9=x^2-2.3x+3^2=(x-3)^2$
c. $5(x-y)-y(y-x)=5(x-y)+y(x-y)=(x-y)(5+y)$
d. $2x-y^2+2xy-y=(2x-y)+(2xy-y^2)=(2x-y)-y(2x-y)=(2x-y)(1-y)$
e.
$6x^3y^4+12x^2y^3-18x^3y^2=6x^2y^2(xy^2+2y-3x)$
1) Làm tính nhân
a) 𝑥.(𝑥2–5)
b) 3𝑥𝑦(𝑥2−2𝑥2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
\(1,\\ a,=x^3-5x\\ b,=3x^3y-6x^3y^2+9xy\\ c,=6x^2-6x-36\\ d,=x^3+2x^2y-3xy^2\\ 2,\\ a,=4x^2-25\\ b,=x^2-6x+9\\ c,=9x^2+24x+16\\ d,=x^3-6x^2y+12xy^2-8y^3\\ e,=125x^3+225x^2y+135xy^2+27y^3\\ f,=125-x^3\)
\(g,=8y^3+x^3\\ 3,\\ a,=x\left(x+2\right)\\ b,=\left(x-3\right)^2\\ c,=\left(x-y\right)\left(y+5\right)\\ d,=2x\left(y+1\right)-y\left(y+1\right)=\left(2x-y\right)\left(y+1\right)\\ e,=6x^2y^2\left(xy^2+2y-3x\right)\)
Bài 10. Cho phương trình: 𝑥^ 4 − 2𝑥^2 + 𝑚 − 2 = 0 (1)
1. Giải phương trình khi m = −1.
2. Tìm m để phương trình (1) có 4 nghiệm phân biệt.
1.Thay m=-1 vào pt ta được:
\(x^4-2x^2-3=0\)\(\Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vn\right)\\x^2=3\end{matrix}\right.\)\(\Rightarrow x=\pm\sqrt{3}\)
Vậy...
2.Đặt \(t=x^2\left(t\ge0\right)\)
Với mỗi t>0 thì sẽ luôn có hai x phân biệt
Pttt: \(t^2-2t+m-2=0\) (2)
Để pt (1) có 4 nghiệm pb \(\Leftrightarrow\) PT (2) có hai nghiệm pb dương
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\S=2>0\left(lđ\right)\\P=m-2>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4-4\left(m-2\right)>0\\m>2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\)\(\Rightarrow2< m< 3\)
Vậy...
1. Bạn tự giải
2. Đặt \(x^2=t\ge0\) pt trở thành:
\(t^2-2t+m-2=0\) (2)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (2) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=1-\left(m-2\right)>0\\t_1+t_2=2>0\\t_1t_2=m-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 3\\m>2\end{matrix}\right.\)
\(\Rightarrow2< m< 3\)
8: Giải phương trình (𝑥 + 1)√𝑥 2 − 2𝑥 + 3 = 𝑥 2 + 1 . Tính tổng bình phương các nghiệm A. 6 B. 3 + √8 C. 8 D. 4 + √12
Tìm giá trị của x
𝑥 +4/5 ×3/8=3/2
𝑥=2/5
𝑥=6/5
𝑥=16/5
𝑥 =72/40
\(x+\dfrac{4}{5}\times\dfrac{3}{8}=\dfrac{3}{2}\)
\(x+\dfrac{3}{10}=\dfrac{3}{2}\)
\(x=\dfrac{3}{2}-\dfrac{3}{10}\)
\(x=\dfrac{12}{10}=\dfrac{6}{5}\)
a) (𝑥2+1)(𝑥−3)−(𝑥−3)(𝑥2+3𝑥+9)
b) (𝑥+2)2+𝑥(𝑥+5)
c) (5𝑥+4𝑦)(5𝑥−4𝑦)−24𝑥2+15𝑦2
a, (x2+1)(x-3)-(x-3)(x2+3x+9)
=(x-3)(x2+1+x2+3x+9)
(x-3)(2x2+3x+10)