Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Ngọc Hà
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Cô Bé Mùa Đông
Xem chi tiết
Huỳnh Xuân Mai
Xem chi tiết
Nguyễn Hưng Phát
16 tháng 1 2018 lúc 12:33

Ta có:\(A=n^3+3n^2+5n+3\)=\(n^3-n+3n^2+6n+3\)

=\(n\left(n^2-1\right)+3\left(n^2+2n+1\right)\)

\(=\left(n-1\right)n\left(n+1\right)+3\left(n+1\right)^2\)

Vì \(\left(n-1\right)n\left(n+1\right)\) là tích của 3 số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)

Mà \(3\left(n+1\right)^2⋮3\) nên \(A=n^3+3n^2+5n+3⋮3\) với mọi n

Nguyễn Lê Nhật Linh
Xem chi tiết
Trần Anh
19 tháng 4 2016 lúc 21:11

vì 3n^2 và 3 chia hết cho 3 nên xét n^3 + 5n = n(n^2 + 5)

nếu n chia hết cho 3 thì ....

nếu n không chia hết cho 3 thì n^2 chia 3 dư 1 suy ra n^2 + 5 chia hết cho 3

Nguyễn Lê Nhật Linh
28 tháng 4 2016 lúc 15:55

ta có n là số nguyên dương => n là số tự nhiên khác 0

A = n3 + 3n2 + 5n +3

   = (n3 - n) + 3(n2 +2n +1)

   = n(n - 1)(n + 1) + 3(n2 + 2n +1)

ta thấy n(n-1)(n+1) là 3 số tự nhiên liên tiếp

mà tích 3 số tự nhiên liên tiếp thì chia hết cho 3 

=> n(n-1)(n+1) chia hết cho 3

mặc khác 3(n2 + 2n +1) luôn chia hết cho 3

=> n(n-1)(n+1) + 3(n+ 2n +1) chia hết cho 3 với mọi n nguyên dương

=> n3 + 3n2 + 5n +3 luôn chia hết cho 3 với mọi n nguyên dương

Vietnhi Vo
Xem chi tiết
Minh Triều
17 tháng 6 2015 lúc 9:52

(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7

                           =6n2-12

                           =3(2n-4)

=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n

(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)

 =5n2-17n-12-5n2-3n+2

=-20n-10

=5(-4n-2)

=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n

Hoàng Nguyễn Xuân Dương
17 tháng 6 2015 lúc 9:56

trieu dang làm đúng rùi

TXT Channel Funfun
Xem chi tiết
Agatsuma Zenitsu
7 tháng 2 2020 lúc 0:55

Ta có: \(A=6n^2+5n+1=\left(3n+1\right)\left(2n+1\right)\)là số chính phương.

\(\Rightarrow3n+1,2n+1\)là số chính phương.

\(\Rightarrow3n+1=x^2;2n+1=y^2\)

\(\Rightarrow y\)lẻ.

\(\Rightarrow y=2k+1\Rightarrow2n+1=\left(2k+1\right)^2\Rightarrow n=2k\left(k+1\right)\)

\(\Rightarrow n\)chẵn.

\(\Rightarrow3n+1\) lẻ 

\(\Rightarrow x\)lẻ.

\(\Rightarrow n=x^2-y^2⋮8\)

Lại có: \(x^2+y^2=5n+2\) chia \(5\)dư \(2\)

Vì số chính phương chia \(5\)dư \(0,1,4\)

\(\Rightarrow x^2,y^2\)chia \(5\)dư \(1\)

\(\Rightarrow x^2-y^2⋮5\)

\(\Rightarrow n⋮5\)

\(\Rightarrow n⋮5.8=40\left(đpcm\right)\)

Khách vãng lai đã xóa
Ngô Thuỳ Yến Nhi
Xem chi tiết
Triệu Minh Anh
10 tháng 4 2016 lúc 17:29

Vì số n là số nguyên dương\(\Rightarrow\) n=2k hoacn=2k+1    (k\(\in\)N*)

Với n=2k \(\Rightarrow\) (5n+15)(n+6)=(10k+15)(2k+6)

                                        =10x2k2+10x6k+30k+80

                                        =10x2k2+10x6k+10x3k+10x8

                                        =10(2k2+6k+3k+8) chia hết cho 10

Với n=2k+1 \(\Rightarrow\) (5n+15)(n+6)=[10(k+1)+15](2k+1+6)     

                                            =(10k+10+15)(2k+7)

                                            =10x2kk+10x7k+10x2k+10x7+30k+105

                                            =10(2kk+7k+2k+7+2k)+105

Vì 10(2kk​+7k+2k+7+2k) chia hết cho 10 mà 2x105 chia hết cho 10 

​ \(\Rightarrow\) 105 chia hết cho 10

Vậy n là số nguyên dương thì (5n+15)(n+6) chia hết cho 10

Cô nàng giấu tên
Xem chi tiết
Quách Trần Gia Lạc
Xem chi tiết
Akai Haruma
17 tháng 1 2018 lúc 11:34

Lời giải:

\(A=n^3+3n^2+5n+3\)

\(A=n^2(n+1)+2n(n+1)+3(n+1)\)

\(A=(n+1)(n^2+2n+3)\)

Nếu \(n=3k\Rightarrow n^2+2n+3=9k^2+6k+3=3(3k^2+2k+1)\)

\(\Rightarrow n^2+2n+3\vdots 3\Rightarrow A\vdots 3\)

Nếu \(n=3k+1\Rightarrow n^2+2n+3=n(n+2)+3\)

\(=(3k+1)(3k+3)+3=3[(3k+1)(k+1)+1]\vdots 3\)

\(\Rightarrow A\vdots 3\)

Nếu \(n=3k+2\Rightarrow n+1=3k+3=3(k+1)\vdots 3\)

\(\Rightarrow A\vdots 3\)

Từ các TH trên suy ra A luôn chia hết cho 3 với mọi số tự nhiên $n$