cho a,b,c thuộc Q thỏa mãn a+2b+3c>=20. Tím GTNN: a+b+c+3/a+9/2b+4/c
Cho 3 số thực dương a,b,c thỏa mãn a+2b+3c ≥ 20.
Tìm GTNN của biểu thức A=a+b+c+3/a+9/2b+4/c
\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\right)\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{1}{4}\left(a+2b+3c\right)\\ A\ge2\sqrt{\dfrac{3a}{4}\cdot\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}\cdot\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}\cdot\dfrac{4}{c}}+\dfrac{1}{4}\cdot20\\ A\ge3+3+2+5=13\\ A_{min}=13\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
cho a,b,c>0 thỏa mãn a+2b+3c>=20
tìm GTNN: a+b+c+3/a+9/(2b)+4/c
đặt
\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
\(=>4A=4a+4b+4c+\dfrac{12}{a}+\dfrac{36}{2b}+\dfrac{16}{c}\)
\(=>4A=a+2b+3c+3a+\dfrac{12}{a}+2b+\dfrac{36}{2b}+c+\dfrac{16}{c}\)
áp dụng BDT AM-GM
\(=>\dfrac{12}{a}+3a\ge2\sqrt{12.3}=12\)
\(=>2b+\dfrac{36}{2b}\ge2\sqrt{36}=12\)
\(=>c+\dfrac{16}{c}\ge2\sqrt{16}=8\)
\(=>4A\ge20+12+12+8=52=>A\ge13\)
dấu"=" xảy ra<=>a=2,b=3,c=4
cho 3 số thực dương a, b, c thỏa mãn a+2b+3c \(\ge20\). Tìm GTNN của A= a+b+c+\(\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
Ta có:
\(A=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.\left(a+2b+3c\right)\)
\(\ge3+3+2+\frac{20}{4}=13\)
Vậy GTNN của A là 13 đạt được khi \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)
_(Từ đầu bài ta có: GTNN của A là 13 đạt được khi: b = 3 và c =
a = 9 - (3 + 4)
= 2
GTNN của A = 3 <=> \(\hept{\begin{cases}a=2\\b=3\\c=4\end{cases}}\)
Cho \(a,b,c>0\) thỏa mãn \(a+2b+3c\ge20\). Tìm GTNN của biểu thức \(S=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)
(bài này mình làm được rồi nhưng đăng lên để đố các bạn :)))
Đúng như bạn Quang viết, GTNN của S là 13 khi \(\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\), nhưng mình cần một lời giải thích vì sao nó lại ra như vậy.
Cho mình hỏi bài dạng có tìm điểm rơi ko và tìm bằng cách nào vậy?
Cho a, b, c là 3 số thực dương thỏa mãn: a+2b+3c=3. Tìm GTNN của biểu thức: \(Q=\dfrac{a+1}{1+4b^2}+\dfrac{2b+1}{1+9c^2}+\dfrac{3c+1}{1+a^2}\)
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)
Ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)
Tương tự:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)
Cộng vế:
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)
\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
Cho a, b, c > 0 và a + 2b + 3c ≥ 20.
Tìm GTNN của \(S=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(S=a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(=\left(\frac{3a}{4}+\frac{3}{a}\right)+\left(\frac{b}{2}+\frac{9}{2b}\right)+\left(\frac{c}{4}+\frac{4}{c}\right)+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge2\sqrt{\frac{3a}{4}.\frac{3}{a}}+2\sqrt{\frac{b}{2}.\frac{9}{2b}}+2\sqrt{\frac{c}{4}.\frac{4}{c}}+\frac{1}{4}.20\)
\(\Rightarrow S\ge13\)
Đẳng thức xảy ra khi a = 2, b = 3, c = 4
Vậy minS = 13 tại (a,b,c) = (2,3,4)
cho a,b,c là các số thực dương thỏa mãn a+2b+3c\(\ge\)20
tìm gtnn P= \(a+b+c+\frac{3}{a}+\frac{9}{2b}+\frac{4}{c}\)
\(P=\frac{3}{a}+\frac{3}{4}a+\frac{9}{2b}+\frac{1}{2}b+\frac{4}{c}+\frac{1}{4}c+\frac{1}{4}\left(a+2b+3c\right)\)
\(\ge3\cdot2\sqrt{\frac{1}{a}\cdot\frac{a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{1}{4}\cdot20\)
\(\Rightarrow P\ge3+3+2+5=13\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)
cho a;b;c thuộc tập (-1;0;1;2;3;4) thỏa mãn a+2b+3c<=4
c/m : a^2+2b^2+3c^2<=36