Tìm một số biết bình phương của chúng bằng lập phương tổng các chữ số của nó
Tìm một số biết bình phương của chúng bằng lập phương tổng các chữ số của nó
Gọi số có 2 chữ số là ab (gạch đầu). ĐK : 9≥a≥1 , 9≥b≥0 , a,b thuộc N.
Theo đề ta có :
(a+b)³=(10a+b)²
<=>a+b=[1+9a/(a+b)]²
=>a+b là số chính phương và 9a chia hết cho (a+b)
=>a+b thuộc {1;4;9;16} và 9a chia hết cho (a+b)
☻a+b=1 => 10a+b=1 (loại)
☻a+b=4 => 10a+b=8 (loại)
☻a+b=9 => 10a+b=27 =>a=2 và b=7 (nhận)
☻a+b=16=>10a+b=64 =>a=6 và b=4 (loại)
Vậy số cần tìm là 27
tích nha
đáp án bằng 27
Tìm một số biết bình phương của chúng bằng lập phương tổng các chữ số của nó
giải ra đàng hoàng nha!!!!!ai đúng mình tick
(ab)^2=(a+b)^3
Từ đó suy ra (ab) phải là lập phương của 1 số, a+b là bình phương của 1 số
(ab) = 27 hoặc 64
chỉ có 27 thỏa mãn
vậy (ab)=27 TICK NHA
Tìm một số biết bình phương của chúng bằng lập phương tổng các chữ số của nó
giải ra đàng hoàng nha!!!!!ai đúng mình tick
Tìm một số có hai chữ số biết rằng nó bằng lập phương của một số tự nhiên và tổng các chữ số của nó bằng bình phương của một số tự nhiên
Tìm ra một số có 2 chữ số biết rằng nó bằng lập phương của 1 số tự nhiên và tổng các chữ số của nó bằng bình phương của 1 số tự nhiên.
Tìm một số có 3 chữ số biết số đó bằng lập phương của một số tự nhiên và tổng các chữ số của nó bằng bình phương của một số tự nhiên
Tìm một số có hai chữ số biết rằng số đó bằng lập phương của một số tự nhiên và tổng các chữ số của nó bằng bình phương của số tự nhiên ấy
Gọi số có 2 chữ số là ab. 9 ≥ a ≥ 1 , 9 ≥ b ≥ 0 , a,b thuộc N.
Theo đề ta có :
( a + b ) ³ = ( 10 a + b ) ²
< = >a + b = [ 1 + 9 a / ( a + b) ] ²
=> a + b là số chính phương và 9a chia hết cho ( a + b)
=> a + b \(\in\){ 1 ; 4 ; 9 ; 16 } và 9a chia hết cho ( a + b )
a + b = 1 => 10 a + b = 1 (loại)
a + b = 4 => 10 a + b = 8 (loại)
a + b = 9 => 10 a + b = 27 => a = 2 và b = 7 (nhận)
a + b = 16=> 10 a + b = 64 => a = 6 và b = 4 (loại)
Vậy số cần tìm là 27
Tìm một số có hai chữ số biết rằng số đó bằng lập phương của một số tự nhiên và tổng các chữ số của nó bằng bình phương cuả số tự nhiên đó.
Theo mình thì phân tích ra thành thế này
gọi số cần tìm là \(ab\) có:
\(ab=x^3;a+b=x^2\)(\(x\) là số tự nhiên mà khi lập phương lên thì bằng \(ab\), khi bình phương lên thì bằng \(a+b\))
Từ đó ta có: \(10a+b=x^3\)
\(a+b=x^2\)
Rồi suy ra được ab thì phải, mình không biết có đúng không nữa, nếu mà các bước mình làm đúng thì bạn nghiên cứu thêm nhé
Bạn ơi, cái này mình cũng làm ra đến đó rồi nhưng mà chưa biết làm tiếp. Bạn giúp mình nhé
Tìm số có 2 chữ số biết bình phương của số đó bằng lập phương tổng các chữ số của nó