Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Thị Thảo
Xem chi tiết
Trà My
4 tháng 7 2017 lúc 12:36

Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

=>x=27;z=36;z=60

Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)

+)k=-2 => x=-4;y=-5

+)k=2 => x=4;y=5

Vậy x=-4;y=-5 hoặc x=4;y=5

Hồ Gia Bảo
Xem chi tiết
Hồ Gia Bảo
8 tháng 10 2016 lúc 19:49

À MÌNH TRẢ LỜI NÈ (NHÁC SUY NGHĨ) TA CÓ X^4+Y^2 LỚN HƠN HOẶC BẰNG 2X^2Y VÀ X^2Y^4 LỚN HƠN HOẶC BẰNG 2XY^2 NÊN KHI ĐỔI THÀNH PHÂN SỐ SẼ LÀ X/X^4+Y^2<HOẶC = X/2X^2Y VÀ X/X^2+Y^4< HOẶC BẰNG X/2XY^2

MÀ XY=1 NÊN: X/2X^2Y=X/2X=1/2

Y/2XY^2=Y/2Y=1/2

NÊN X/X^4+Y^2 +Y/Y^4+X^2 < HOẶC = 1/2+1/2=1

VẬY GTLN CỦA A LÀ 1 KHI X=Y=1
 

Trang
Xem chi tiết
Hoàng Nguyễn Khánh Linh
4 tháng 10 2016 lúc 16:10

Bài 1:

 \(\frac{x}{2}\) = \(\frac{y}{3}\) , \(\frac{y}{4}\) = \(\frac{z}{5}\)  và x + y - z = 10

\(\frac{x}{2}\) = \(\frac{y}{3}\) --> \(\frac{x}{2.4}\) = \(\frac{y}{3.4}\) => \(\frac{x}{8}\) = \(\frac{y}{12}\) 

\(\frac{y}{4}\) = \(\frac{z}{5}\) --> \(\frac{y}{4.3}\) = \(\frac{z}{5.3}\) => \(\frac{y}{12}\) = \(\frac{z}{15}\) 

=> \(\frac{x}{8}=\frac{y}{12}\)  = \(\frac{z}{15}\)             

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\frac{x}{8}\) = \(\frac{y}{12}\) = \(\frac{z}{15}\) --> \(\frac{x+y-z}{8+12-15}_{ }\) = \(\frac{10}{5}\) = 2

=> \(\frac{x}{8}\) = 2 --> x = 16

      \(\frac{y}{12}=2\) --> y = 24

      \(\frac{z}{15}=2\) --> z = 30

Vậy x = 16 ; y = 24 ; z = 30

Bài 2: 

               \(\frac{x}{2}=\frac{y}{5}\) và x . y = 10

  Đặt \(\frac{x}{2}=\frac{y}{5}=k\) 

Ta có: x = 2 . k ; y = 5 . k

          x . y = 10 => 2k . 5k = 10

                          => 10 . \(^{k^2}\) = 10

                          => \(^{k^2}\) = 1 --> k = -1 hoặc k = 1

          k = 1 ta có \(\frac{x}{2}=\frac{y}{5}=1\) --> x = 2 ; y = 5

          k = -1 ta có \(\frac{x}{2}=\frac{y}{5}=-1\) --> x = -2 ; y = -5

 

                                                              

Trần Việt Linh
4 tháng 10 2016 lúc 15:45

Bài 1:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\begin{cases}x=16\\y=24\\z=30\end{cases}\)

Bài 2:

Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k;y=5k\)

Có: xy=10

\(\Leftrightarrow2k\cdot5k=10\)

\(\Leftrightarrow k^2=1\Leftrightarrow\left[\begin{array}{nghiempt}k=1\\k=-1\end{array}\right.\)

Với k=1 thì x=2 ; y=5

Với k=-1 thì x=-2 ; y=-5

 

Nguyen Thi Mai
4 tháng 10 2016 lúc 15:48

Bài 1 :

Ta có:

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 

Nên x = 2.8 = 16

      y = 2.12 = 24

      z= 2. 15 = 30

Vậy ...

Bài 2 :

Đặt k =  . Ta có x = 2k, y = 5k

Từ xy=10. suy ra 2k.5k = 10 => 10 k^{2} = 10 => k^{2} = 1 => k = ± 1

Với k = 1 ta được  = 1 suy ra x = 2, y = 5

Với k = - 1 ta được  = -1  suy ra x = -2, y = -5

Nguyễn Thị Kim Anh
Xem chi tiết
ftftg hjbj
Xem chi tiết
Trịnh Xuân Diện
Xem chi tiết
Lê Chí Cường
9 tháng 10 2015 lúc 22:17

\(\frac{x+y}{5}=\frac{x-y}{1}\)

=>\(\frac{x}{5}+\frac{y}{5}=x-y\)

=>\(\frac{y}{5}+y=x-\frac{x}{5}\)

=>\(\frac{y}{5}+\frac{5y}{5}=\frac{5x}{5}-\frac{x}{5}\)

=>\(\frac{y+5y}{5}=\frac{5x-x}{5}\)

=>\(\frac{6y}{5}=\frac{4x}{5}\)

=>6y=4x

=>\(y=\frac{4}{6}.x\)

Lại có: \(\frac{x-y}{1}=\frac{x.y}{2}\)

=>2.(x-y)=x.y

=>\(2.\left(x-\frac{4}{6}.x\right)=x.y\)

=>\(2.\frac{1}{3}.x=x.y\)

=>\(\frac{2}{3}=y\)

=>\(x=\frac{2}{3}:\frac{4}{6}=1\)

Vậy x=1,\(y=\frac{2}{3}\)

tống lê kim liên
Xem chi tiết
Isolde Moria
2 tháng 8 2016 lúc 7:15

a)

Ta có

\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{3x}{6}=\frac{y}{5}\)

Áp dụng tc của dãy tỉ só bằng nhau

\(\Rightarrow\frac{3x}{6}=\frac{y}{5}=\frac{3x-y}{6-5}=\frac{10}{1}=10\)

=> x=2.10=20

    y=5.10=50

Isolde Moria
2 tháng 8 2016 lúc 7:21

Ta có

\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{xy}{10}=\frac{30}{10}=3\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{12}\\x=-\sqrt{12}\end{array}\right.\)

     \(\left[\begin{array}{nghiempt}y=\sqrt{75}\\y=-\sqrt{75}\end{array}\right.\)

Mà 2;5 cùng dấu

=> x; y cùng dấu

Vậy \(\left(x;y\right)=\left(\sqrt{12};\sqrt{75}\right);\left(-\sqrt{12};-\sqrt{75}\right)\)

Lê Thị Kiều Oanh
2 tháng 8 2016 lúc 10:58

a) Ta có: \(\frac{x}{2}\) = \(\frac{y}{5}\) và 3x-y = 10

=> \(\frac{3x}{6}\) = \(\frac{y}{5}\) và 3x-y = 10

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{3x}{6}\) = \(\frac{y}{5}\) = \(\frac{3x-y}{6-5}\) = \(\frac{11}{1}\) = 11

=> x= \(\frac{11.6}{3}\) = 22

=> y= 11.5= 55

Vậy x= 22

       y= 55

Nhi Ngọc
Xem chi tiết
Đinh Thùy Linh
15 tháng 6 2016 lúc 12:06

a) Cộng cả 3 đẳng thức trên ta có:

2(x + y + z) = 1/2 +1/3 + 1/4 = 13/12 => x + y + z = 13/24 (*)

z = 13/24 - 1/2 = 1/24

x = 13/24 - 1/3 = 5/24

y = 13/24 - 1/4 = 7/24.

b) Nhân cả 3 đẳng thức ta có: x2y2z2 = 1/16 => xyz = 1/4 hoặc -1/4

Nếu xyz = 1/4 thì: z = -1/2; x = 1/2; y = -1Nếu xyz = -1/4 thì: z =  1/2; x = -1/2; y = 1
Nguyễn Phúc Thiên
Xem chi tiết