Tính
\(A=2\sqrt{\frac{0,01}{1,21}}+3\frac{2}{\sqrt{100+4+40}}-\frac{3}{4}\)
Tính
2 . \(\frac{\sqrt{0,01}}{1,21}\)+ 3 . 2/ \(\sqrt{100}+4+40\)- 3/4
tính :
\(B=2\sqrt{\frac{0,01}{1,21}}+3\frac{2}{\sqrt{10^2+2^2+40}}-\frac{3}{4}\)
Nếu \(3\frac{2}{\sqrt{10^2+2^2+40}}\)là hỗn số
=> B = \(2\sqrt{\frac{0,01}{1,21}}+3\frac{2}{\sqrt{10^2+2^2+40}}-\frac{3}{4}\)
B = \(2\sqrt{\frac{1}{121}}+3\frac{2}{144}-\frac{3}{4}\)
B = \(\frac{2}{11}+3\frac{1}{6}-\frac{3}{4}\)
B = \(\frac{2}{11}+\frac{19}{6}-\frac{3}{4}\)
B = \(\frac{343}{132}\)
\(B=\sqrt[2]{\frac{1}{121}}+3\frac{2}{\sqrt{100+4+40}}-\frac{3}{4}.\)
\(B=\sqrt[2]{\frac{1}{11^2}}+3\frac{2}{\sqrt{144}}-\frac{3}{4}\)
\(B=\frac{2}{11}+\frac{6}{\sqrt{12^2}}-\frac{3}{4}\)
\(B=\frac{2}{11}+\frac{6}{12}-\frac{3}{4}=-\frac{3}{44}\)
Tính \(A=\frac{1}{2.\sqrt{1}+1.\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+....+\frac{1}{100.\sqrt{99}+99.\sqrt{100}}\)
Sorry nha cái này tớ chưa học nên hổng biết làm
\(\text{Trả lời : }\)
\(\text{Bạn tham khảo nha !}\)
Câu hỏi của Hàn Băng - Toán lớp 9 - Học toán với OnlineMath
https://olm.vn/hoi-dap/detail/204748999615.html
Chúc bạn học tốt !
Tính
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
Ta có \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)
\(=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào A ta được
\(A=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}\)
Incursion_03 đúng mẹ nó rồi nhé!
tui cx định tl nhưng nó tl trước ns chung nó đúng cmnr
thực hiện phép tính
a )\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{1680}+\sqrt{1681}}\)
b) \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
b/ Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}.\sqrt{n+1}.\left(\sqrt{n+1}+\sqrt{n}\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}.\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào bài toán ta được
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{99}-\frac{1}{\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
Cả 2 câu là n tự nhiên khác 0 hết nhé
a/ Ta có: \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Áp đụng vào bài toán được
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{1680}+\sqrt{1681}}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{1681}-\sqrt{1680}\)
\(=\sqrt{1681}-\sqrt{1}=41-1=40\)
Tính giá trị của các biểu thức sau :
a/ \(A=\dfrac{1}{\sqrt{25}}+\dfrac{\sqrt{49}}{\sqrt{36}}-\dfrac{2}{\sqrt{100}}\)
b/ \(B=\sqrt{\dfrac{0,01}{1,21}}+3.\dfrac{2}{\sqrt{10^2}+2^2+40}-\dfrac{3}{4}\)
a) \(A=\dfrac{1}{\sqrt{25}}+\dfrac{\sqrt{49}}{\sqrt{36}}-\dfrac{2}{\sqrt{100}}.\)
\(=\dfrac{1}{5}+\dfrac{7}{6}-\dfrac{1}{5}.\)
\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\dfrac{7}{6}.\)
\(=0+\dfrac{7}{6}=\dfrac{7}{6}.\)
Vậy \(A=\dfrac{7}{6}.\)
b) \(B=\sqrt{\dfrac{0,01}{1,21}}+3.\dfrac{2}{\sqrt{10^2}+2^2+40}-\dfrac{3}{4}.\)
\(=\dfrac{1}{11}+3.\dfrac{2}{10+4+40}-\dfrac{3}{4}.\)
\(=\dfrac{1}{11}+3.\dfrac{1}{37}-\dfrac{3}{4}.\)
\(=\dfrac{1}{11}+\dfrac{1}{9}-\dfrac{3}{4}.\)
\(=\dfrac{36}{396}+\dfrac{44}{396}-\dfrac{297}{296}.\)
\(=-\dfrac{217}{396}.\)
Vậy \(B=-\dfrac{217}{396}.\)
tính
\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+........+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
Chứng minh phụ: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) (trục căn thức ở mẫu)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng vào tính: \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(\frac{1}{\left(1+1\right)\sqrt{1}+1\sqrt{1+1}}+\frac{1}{\left(1+2\right)\sqrt{2}+2\sqrt{2+1}}+...+\frac{1}{\left(99+1\right)\sqrt{99}+99\sqrt{99+1}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
= 1 - 1/ căn 100
=1 - 1/10
= 9/10
Tính tổng S =\(\frac{1}{2+\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{4\sqrt{3}+3\sqrt{4}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)
Tìm x, y, z
a) \(\sqrt{16}x+\frac{3}{4}=2\sqrt{\frac{4}{25}}+0,01.\sqrt{100}\)
b) \(\left|x\right|+3^2=2^2+\left(\frac{1}{2}\right)^3\)
c) \(2x\left(x-\frac{2}{3}\right)=0\)
d) \(\frac{37-x}{x+13}=\frac{3}{7}\)
a: \(\Leftrightarrow4x+\dfrac{3}{4}=2\cdot\dfrac{2}{5}+0.01\cdot10=\dfrac{9}{10}\)
=>4x=3/20
hay x=3/80
b: \(\Leftrightarrow\left|x\right|=4+\dfrac{1}{8}-9=-\dfrac{39}{8}\)(vô lý)
c: 2x(x-2/3)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
d: \(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
=>259-7x=3x+39
=>-10x=-220
hay x=22