tìm a để x^4+7x^3 +2x^2 +13x +a chia hết cho x+6
cho x thuộc z
c/m các biểu thức sau chia hết cho 6
a=2x^4-7x^3-2x^2+13x+6
b=x^4+2x^3-13x^2-14x+24
Bài 5: Tìm a , b để các đa thức sau:
1) x^4+6x^3+7x^2-6x+a chia hết cho x2+3x-1
2) x^4-x^3+6x^2-x+a chia hết cho x^2- x+5
3) x^3+3x^2+5x+a chia hết cho x+3
4) x^3+2x^2-7x+a chia hết cho 3x -1
5) 2x^2+ax+1 chia cho x-3 dư 4
3: \(\Leftrightarrow a-15=0\)
hay a=15
Tìm a để:
a) 10x^2 - 7x + a chia hết cho 2x - 3.
b) 2x^2 + ax - 4 chia hết cho x + 4.
c) x^3 + ax^2 + 5x + 3 chia hết cho x^2 + 2x + 3
cho đa thức \(P\left(x\right)=2x^4-7x^3-2x^2+13x+6\)
a) Phân tích P(x) thành nhân tử.
b) Chứng minh rằng: P(x) chia hết cho 6 (với mọi x nguyên)
Cho đa thức P(x) = 2x4-7x3-2x2+13x+6 , chứng minh rằng P(x) chia hết cho 6 với mọi số x nguyên.
Nhẩm nghiệm, thấy x=-1 thỉ P=0, phân tích đa thức dần thành nhân tử
P(x)=\(\left(x+1\right)\left(2x^3-9x^2+7x+6\right)\)
=\(2x^{^{ }4}+2x^3-9x^3-9x^2+7x^2+7x+6x+6\)
=\(\left(x+1\right)\left(x-2\right)\left(2x^2-5x-3\right)\)
=\(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-1\right)\)
Đây là 1 tích trong đó có 3 số nguyên lien tiep.
Trong 3 so nguyen lien tiep co it nhat 1 so chan va 1 so chia het cho 3
=> h cua chung chia het cho 2x3=6.
Vay P chia het cho 6.
1) Tính
(x^4 - 2x^3 + x^2 + 13x - 11) : (x^2 - 2x + 3)
2) Tìm a để đa thức x^4 - x^3 + 6x^2 - x + a chia hết cho đa thức x^2 - x + 5
bai1 :tinh
a)(x^3-5x^2+8x-4):(x-2)
b)(x^3-9x^2+6x+10):(x+1)
c)(x^3-7x+6):(x+3)
bài 2:tìm a sao cho đa thức:x^4-x^3+6x^2-x+a chia hết cho dã thú x^2-x+5
bai3:choA=x^4-2x^3+x^2+13x-11
B=x^2-2x+3
tìm thương và số dư R sao cho A=B.Q+R
\(a.\frac{x^3-6x^2+12x-8+x^2-4x+4}{x-2}\)\(=\frac{\left(x-2\right)^3+\left(x-2\right)^2}{x-2}\)\(=2\left(x-2\right)^2\)
Cho đa thức P(x) = 2x4-7x3-2x2+13x+6
a) Phân tích đa thức thành nhân tử
b) Chứng minh rằng: P(x) chia hết cho 6 với mọi số nguyên x
\(P\left(x\right)=2x^4-7x^3-2x^2+13x+6\)
a)Phân tích đa thức P(x) thành nhân tử
b)CMR: P(x) chia hết cho 6 với mọi x thuộc Z