cho tam giác ABC vẽ trung tuyến AM
CMR: nếu Cot B=3 Cot C thì AM=AC
Cho tam giác ABC, đường trung tuyến AM, đường cao AH.
CMR: Nếu \(\cot B=3\cot C\)thì AM = AC.
cho tam giác ABC vẽ trung tuyến AM. CMR : Nếu Cot B=3 Cot C thì AM=AC
Cho tam giác ABC, đường trung tuyến AM, đường cao AH.
CMR: Nếu \(\cot B=3\cot C\)thì AM = AC.
Cho tam giác nhọn ABC, góc B> góc C, đường cao AH và đường trung tuyến AM.
a) CMR: HC-HB=2HM
b) Gọi a là góc tạo bởi đường cao và đường trung tuyến. CMR: \(\tan\alpha=\frac{\cot C-\cot B}{2}\)
a) Do AM là trung tuyến nên BM = MC
Ta có : \(HC-HB-2HM\)
\(=HM+MC-HB-HM-HM\)
\(=MC-HB-HM\)
\(=MC-\left(HB+HM\right)\)
\(=MC-MB=0\)
\(\Rightarrow HC-HB=2MC\left(đpcm\right)\)
b) Xét \(\Delta AHM\)có \(\tan a=\frac{HM}{AH}\)
Xét \(\Delta AHC\)có \(\cot C=\frac{HC}{AH}\)
Xét \(\Delta AHB\)có \(\cot B=\frac{HB}{AH}\)
Ta có : \(\frac{\cot C-\cot B}{2}=\left(\frac{HC}{AH}-\frac{HB}{AH}\right)\div2=\frac{HC-HB}{AH}\div2\)
Mà \(HC-HB=2HM\)( câu a )
\(\Rightarrow\frac{\cot C-\cot B}{2}=\frac{2HM}{AH}\div2=\frac{HM}{AH}=\tan a\left(đpcm\right)\)
Vậy ...
Cho tam giác ABC nhọn, Vẽ 2 đường trung tuyến BM,CN vuông góc với nhau.
C/m: \(\cot B+\cot c\ge\frac{2}{3}\)
Dấu"=" xảy ra khi nào?????
Bài Làm:
vẽ AH vuông góc với BC
\(\Rightarrow\cot B=\frac{BH}{AH}\left(\Delta ABH;\widehat{H}=1v\right)\)
\(\Rightarrow\cot C=\frac{HC}{AH}\left(\Delta HCA;\widehat{H}=1v\right)\)
\(\Rightarrow\cot B+\cot C=\frac{BC}{AH}\left(1\right)\)
Gọi G là giao điểm 2 đường trung tuyến BM ; CN
Nếu AG cắt BC tại I thì AI - đường trung tuyến tam giác ABC
Suy ra BI = IC
suy ra GI - đường trung tuyến tam giác GBC vuông tại G
\(\Rightarrow BC=2GI\left(2\right)\)
\(AH\le AI\le3GI\left(3\right)\)
\(\Rightarrow\cot B+\cot C=\frac{BC}{AH}\ge\frac{2AI}{3AI}=\frac{2}{3}\)
Vậy \(\cot B+\cot C\ge\frac{2}{3}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(AH\equiv AI\)
\(\Rightarrow\Delta ABC\)cân tại A
cho tam giác có góc B> góc C, đường cao AH, trung tuyến AM. Đặt góc MAH= alpha. Tìm hệ thức giữa tan alpha với cot B và cot C
\(Ta\)\(có\)\(:\)
\(tana\)\(=\frac{HM}{AH}\)
\(\Rightarrow2\)\(tana\)\(=\frac{2HM}{AH}\)\(=\frac{CH-BH}{AH}\)\(=\frac{CH}{AH}\)\(-\frac{BH}{AH}\)
\(\Rightarrow cot\)\(C\)\(-\)\(cot\)\(B\)
\(\Rightarrow\)\(tana\)\(=\frac{cotC-cotB}{2}\)
Cho tam giác ABC vuông tại A có đường trung tuyến ứng với cạnh huyền AM = 10 cm; AB = 16 cm . Tính cot B?
A. c o t B = 3 4
B. c o t B = 4 5
C. c o t B = 5 4
D. c o t B = 4 3
Đáp án D
Do tam giác ABC vuông tại A có đường trung tuyến AM ứng với cạnh huyền nên:
Cho tam giác ABC nhọn,2 đường trung tuyến BN,CM vuông góc với nhau
CM \(\cot B+\cot C\ge\frac{2}{3}\)
Cho hình vẽ
Gọi G là trọng tâm của ABC
Trước hết tìm cot B và cot C trong hình tam giác. Việc kẻ đường cao AH cho ta ngay kết quả;
cot B + cot C \(=\frac{BH}{AH}+\frac{CH}{AH}=\frac{BC}{AH}\)
Lại nhận thấ \(AM\ge AH\)
Lưu ý; Do \(\frac{T}{C}\) là đường xiên lớn hơn đường vuông góc
Hơn nữa dùng giả thiết \(BM\downarrow CN\) ta có \(GM=\frac{1}{2}BC\)
Như vậy \(BC=2GM=\frac{2AM}{3}\ge\frac{2AH}{3}v\Rightarrow cotB+cotC=\frac{BC}{AH}\ge\frac{2}{3}\)
làm bừa thui,ai trên 11 điểm tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Tam giác ABC có trung tuyến BM. CN vuông góc với nhau. CM: \(\cot B+\cot C\ge\frac{2}{3}\)