Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Phương
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 17:28

\(AC=\sqrt{BC^2-AB^2}=8\\ \Rightarrow A=\dfrac{\dfrac{AC}{BC}+\dfrac{AB}{BC}}{\dfrac{AB}{AC}+\dfrac{AC}{AB}}=\dfrac{\dfrac{AB+AC}{BC}}{\dfrac{6}{8}+\dfrac{8}{6}}=\dfrac{\dfrac{14}{10}}{\dfrac{25}{12}}=\dfrac{7}{5}\cdot\dfrac{12}{25}=\dfrac{84}{125}\)

trân
Xem chi tiết
Rin Huỳnh
29 tháng 12 2021 lúc 19:35

C

Đăng Khoa
Xem chi tiết
Lấp La Lấp Lánh
26 tháng 12 2021 lúc 15:36

a) Áp dụng định lý Pytago:

\(BC^2=AB^2+AC^2\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)

Áp dụng tslg:

\(cosB=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\)

b) Áp dụng HTL :

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow AH=\sqrt{\dfrac{1}{\dfrac{1}{AB^2}}+\dfrac{1}{\dfrac{1}{AC^2}}}=\sqrt{\dfrac{1}{\dfrac{1}{6^2}+\dfrac{1}{8^2}}}=4,8\left(cm\right)\)

Áp dụng tslg:

\(cosBAH=\dfrac{AH}{AB}=\dfrac{4,8}{6}\Rightarrow\widehat{BAH}\approx37^0\)

Đặng Dũng
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 9 2021 lúc 23:50

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}\left(cm\right)\\AC=3\sqrt{13}\left(cm\right)\\AH=6\left(cm\right)\end{matrix}\right.\)

Bảo Duy
Xem chi tiết
Cee Hee
1 tháng 10 2023 lúc 19:33

Câu a) với b) tính cos, tan, sin là tính góc hay cạnh vậy cậu?

Cee Hee
1 tháng 10 2023 lúc 20:24

a) Xét \(\Delta ABC\) vuông tại `A`

Ta có: \(BC^2=AB^2+AC^2\) (đl Pytago)

\(\Rightarrow5^2=4^2+AC^2\\ \Rightarrow AC^2=5^2-4^2\\ \Rightarrow AC^2=25-16=9\\ \Rightarrow AC=\sqrt{9}=3cm\) 

Vậy: \(AC=3cm\)

Ta có: \(CosC=\dfrac{AC}{BC}\left(tslg\right)\)

\(\Rightarrow CosC=\dfrac{3}{5}\\ \Rightarrow CosC\approx53^o\)

Vậy: Góc C khoảng \(53^o\)

Ta có: \(TanB=\dfrac{AC}{AB}\left(tslg\right)\)

\(\Rightarrow TanB=\dfrac{3}{4}\\ \Rightarrow TanB\approx37^o\)

Vậy: Góc B khoảng \(37^o\) 

_

b) Xét \(\Delta ABC\) vuông tại `A`

Ta có: \(BC^2=AB^2+AC^2\) (đl Pytago)

\(\Rightarrow10^2=5^2+AC^2\\ \Rightarrow AC^2=10^2-5^2\\\Rightarrow AC^2=100-25=75\\ \Rightarrow AC=\sqrt{75}=5\sqrt{3}cm\)

Vậy: \(AC=5\sqrt{3}cm\)

Ta có: \(SinC=\dfrac{AB}{BC}\left(tslg\right)\)

 \(\Rightarrow SinC=\dfrac{5}{10}\\ \Rightarrow30^o\)

Vậy: Góc C là \(30^o\)

Ta có: \(SinB=\dfrac{AC}{BC}\left(tslg\right)\)

\(\Rightarrow SinB=\dfrac{5\sqrt{3}}{10}\\ \Rightarrow SinB=60^o\)

Vậy: Góc B là \(60^o\).

Cho Doi
Xem chi tiết
Nguyen Thi Mai
23 tháng 12 2020 lúc 20:44

Theo định lý Pytago ta tính được BC = 10cm

Vì tam giác ABC vuông tại A nên ta có:

+) sinB = \(\dfrac{AC}{BC}=\dfrac{8}{10}=\dfrac{4}{5}\)

+) tanC = \(\dfrac{AB}{AC}=\dfrac{6}{8}=\dfrac{3}{4}\)

=> sinB + tanC= \(\dfrac{4}{5}+\dfrac{3}{4}=\dfrac{31}{20}\)

minhphat2209
Xem chi tiết
Nguyễn Ngọc Anh Minh
14 tháng 8 2023 lúc 14:23

A B C H M I

a/

Xét tg vuông ABC

\(AH^2=BH.HC\) (Trong tg vuông bình phương đường đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích giữa 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền)

\(\Rightarrow AH=\sqrt{2.6}=2\sqrt{3}\)

\(BC=BH+HC=2+6=8\)

\(AB^2=BH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)

\(\Rightarrow AB=\sqrt{2.8}=4\)

b/

Xét tg vuông ABH

\(\sin B=\dfrac{AH}{AB}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)

Xét tg vuông ACH

\(\tan C=\dfrac{AH}{HC}=\dfrac{2\sqrt{3}}{6}=\dfrac{\sqrt{3}}{3}\)

c/

 

Nguyễn Đức Trí
14 tháng 8 2023 lúc 15:28

a) \(AH^2=HB.HC=2.6=12\Rightarrow AH=2\sqrt[]{3}\left(cm\right)\)

\(AB^2=AH^2+BH^2=12+4=16\Rightarrow AB=4\left(cm\right)\left(Pitago\right)\)

b) \(SinB=\dfrac{AH}{AB}=\dfrac{2\sqrt[]{3}}{4}=\dfrac{\sqrt[]{3}}{2}\)

\(tanC=\dfrac{AH}{HC}=\dfrac{2\sqrt[]{3}}{6}=\dfrac{\sqrt[]{3}}{3}\)

Câu C bạn xem lại đề

ngọc trung Đinh ngọc tru...
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 10 2021 lúc 13:48

Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{25^2-20^2}=15\left(cm\right)\)

a) Áp dụng tslg trong tam giác ABC vuông tại A:

\(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}=\dfrac{15}{25}=\dfrac{3}{5}\\cosB=\dfrac{AB}{BC}=\dfrac{20}{25}=\dfrac{4}{5}\\tanB=\dfrac{AC}{AB}=\dfrac{15}{20}=\dfrac{3}{4}\\cotB=\dfrac{AB}{AC}=\dfrac{20}{15}=\dfrac{4}{3}\end{matrix}\right.\)

b) Ta có: \(tanC=\dfrac{AB}{AC}=\dfrac{20}{15}=\dfrac{4}{3}\)

\(P=2cosB-3tanC=2.\dfrac{4}{5}-3.\dfrac{4}{3}=-\dfrac{12}{5}\)

ngọc trung Đinh ngọc tru...
Xem chi tiết