1.So Sánh
\(\frac{42}{43}\)và \(\frac{112}{113}\)
So sánh : \(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}\) và \(B=\frac{7}{12}\)
A=\(\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\) +\(\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)
Ta có : \(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};...;\frac{1}{60}=\frac{1}{60}\) => \(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}>\frac{20}{60}=\frac{1}{3}\)
\(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\) => \(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{20}{80}=\frac{1}{4}\)
=> A > \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
Vậy a >\(\frac{7}{12}\)
\(\frac{7}{12}=\frac{3}{12}+\frac{4}{12}=\frac{1}{4}+\frac{1}{3}\)
ta có:\(A=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)\)
ta có:\(\frac{1}{41}>\frac{1}{42}>\frac{1}{43}>...>\frac{1}{60}\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{59}+\frac{1}{60}>\frac{1}{60}+...+\frac{1}{60}=\frac{20}{60}=\frac{1}{3}\left(1\right)\)
\(\frac{1}{61}>\frac{1}{62}>\frac{1}{63}>...>\frac{1}{80}\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(2\right)\)
từ (1) (2) suy ra \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
\(\Rightarrow A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\left(đfcm\right)\)
tính tổng dãy số: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+..+\frac{1}{80}\)và so sánh với \(\frac{7}{12}\)
So sánh \(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}\) và \(B=\frac{7}{12}\) ta được kết quả là:...
Giúp mình với mình cần gấp!
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
\(A>B\)
\(A=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}\)
\(B=\frac{7}{12}\)
So sánh A và B
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
và 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
So sánh A=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+....+\frac{1}{80}\)và B=\(\frac{7}{12}\)ta được kết quả là: A......B
so sánh các số sau
\(\frac{42}{-37}và\frac{-56}{43}\)
\(\frac{217}{18}và\frac{217}{19}\)
\(\frac{-9}{14}và\frac{19}{-25}\)
\(\frac{42}{-37}va\frac{-56}{43}\)
\(\frac{42}{-37}=\frac{-42}{37}=\frac{-1806}{1591}\)
\(\frac{-56}{37}=\frac{-2408}{1591}\)
Vì\(\frac{-1806}{1591}>\frac{-2408}{1591}\)
=>\(\frac{42}{-37}>\frac{-56}{43}\)
\(\frac{217}{18}va\frac{217}{19}\)
Vì\(\frac{217}{18}>\frac{217}{19}\)
=>\(\frac{217}{18}>\frac{217}{19}\)
\(\frac{-9}{14}va\frac{19}{-25}\)
\(\frac{-9}{14}=\frac{-225}{350};\frac{19}{-25}=\frac{-19}{25}=\frac{-266}{350}\)
Vì\(\frac{-225}{350}>\frac{-266}{350}\)
=>\(\frac{-9}{14}>\frac{19}{-25}\)
Chúc bạn học tốt!
Bài 1: So sánh
a. \(\frac{5}{8}\)và \(\frac{14}{17}\)bằng các cách khác nhau (càng nhiều càng tốt)
b. \(\frac{-16}{121}\)và \(\frac{-24}{113}\)(1 cách)
c. \(\frac{12}{35};\frac{112}{217};\frac{24}{49}\)
1. Chứng tỏ: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
2.So sánh: \(\frac{2010^{2011}+1}{2010^{2012}+1}và\frac{2010^{2010}+1}{2010^{2011}+1}\)
Điền dấu ( >, <, = ) thích hợp vào ô trống:
a) \(\frac{3}{4}.....\frac{97}{98}\) b) \(\frac{42}{43}=\frac{112}{113}\)
Giúp mk nha
a) Xét: \(1-\frac{3}{4}=\frac{1}{4}\); \(1-\frac{97}{98}=\frac{1}{98}\)
Vì \(\frac{1}{4}>\frac{1}{98}\) nên \(\frac{3}{4}< \frac{97}{98}\)
b) Xét: \(1-\frac{42}{43}=\frac{1}{43}\); \(1-\frac{112}{113}=\frac{1}{113}\)
Vì \(\frac{1}{43}>\frac{1}{113}\) nên \(\frac{42}{43}< \frac{112}{113}\)