Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Núi non tình yêu thuần k...
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2022 lúc 11:21

\(C=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)

Dấu '=' xảy ra khi x=1/2

\(D=25x^2-10xy+y^2+2y^2+4y+2-1\)

\(=\left(5x-y\right)^2+2\left(y+1\right)^2-1>=-1\)

Dấu '=' xảy ra khi y=-1 và x=1/5

thuyhang tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 9 2021 lúc 21:52

Bài 1: 

a: \(\left(\dfrac{1}{3}x+2\right)\left(3x-6\right)\)

\(=x^2-3x+6x-12\)

\(=x^2+3x-12\)

b: \(\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)

c: \(\left(-2xy+3\right)\left(xy+1\right)\)

\(=-2x^2y^2-2xy+3xy+3\)

\(=-2x^2y^2+xy+3\)

d: \(x\left(xy-1\right)\left(xy+1\right)\)

\(=x\left(x^2y^2-1\right)\)

\(=x^3y^2-x\)

Nguyễn Lê Phước Thịnh
9 tháng 9 2021 lúc 21:53

Bài 2: 

a: Ta có: \(M=\left(3x+2\right)\left(9x^2-6x+4\right)\)

\(=27x^3+8\)

\(=27\cdot\dfrac{1}{27}+8=9\)

b: Ta có: \(N=\left(5x-2y\right)\left(25x^2+10xy+4y^2\right)\)

\(=125x^3-8y^3\)

\(=125\cdot\dfrac{1}{125}-8\cdot\dfrac{1}{8}\)

=0

Nguyễn Lê Phước Thịnh
9 tháng 9 2021 lúc 21:53

Bài 3: 

Ta có: \(A=\left(x+2\right)\left(3x-1\right)-x\left(3x+3\right)-2x+7\)

\(=3x^2-x+6x-2-3x^2-9x-2x+7\)

=5

tnt
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 3 2023 lúc 15:58

\(M=6x^2+4y^2+6xy+\left(xy+\dfrac{4x}{y}\right)+\left(3xy+\dfrac{3y}{x}\right)+2022\)

\(M\ge3x^2+y^2+3\left(x+y\right)^2+2\sqrt{\dfrac{4x^2y}{y}}+2\sqrt{\dfrac{9xy^2}{x}}+2022\)

\(M\ge3\left(x^2+1\right)+\left(y^2+4\right)+3\left(x+y\right)^2+4x+6y+2015\)

\(M\ge6x+4y+3\left(x+y\right)^2+4x+6y+2015\)

\(M\ge3\left(x+y\right)^2+10\left(x+y\right)+2015\ge3.3^2+10.3+2015=2072\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)

Vương Minh Trang
Xem chi tiết

Bài 1:

a: \(A=x^2+2x+y^2+1\)

\(=x^2+2x+1+y^2\)

\(=\left(x+1\right)^2+y^2\ge0\forall x,y\)

Dấu '=' xảy ra khi \(\begin{cases}x+1=0\\ y=0\end{cases}\Rightarrow\begin{cases}x=-1\\ y=0\end{cases}\)

Bài 2:

a: \(x^2-5x+1\)

\(=x^2-5x+\frac{25}{4}-\frac{21}{4}\)

\(=\left(x-\frac52\right)^2-\frac{21}{4}\ge-\frac{21}{4}\forall x\)

=>\(\frac{3}{x^2-5x+1}\le3:\frac{-21}{4}=-\frac47\forall x\)

=>\(A=-\frac{3}{x^2-5x+1}\ge\frac47\forall x\)

Dấu '=' xảy ra khi \(x-\frac52=0\)

=>\(x=\frac52\)

b: \(A=\frac{6}{-x^2+2x-3}=\frac{-6}{x^2-2x+3}\)

\(=-\frac{6}{x^2-2x+1+2}=-\frac{6}{\left(x-1\right)^2+2}\)

Ta có: \(\left(x-1\right)^2+2\ge2\forall x\)

=>\(\frac{6}{\left(x-1\right)^2+2}\le\frac62=3\forall x\)

=>\(-\frac{6}{\left(x-1\right)^2+2}\ge-3\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

c: \(x^2+8\ge8\forall x\)

=>\(A=\frac{2}{x^2+8}\le\frac28=\frac14\forall x\)

Dấu '=' xảy ra khi x=0

d: \(x^2+x+4\)

\(=x^2+x+\frac14+\frac{15}{4}\)

\(=\left(x+\frac12\right)^2+\frac{15}{4}\ge\frac{15}{4}\forall x\)

=>\(A=\frac{2}{x^2+x+4}\le2:\frac{15}{4}=\frac{8}{15}\forall x\)

Dấu '=' xảy ra khi \(x+\frac12=0\)

=>\(x=-\frac12\)

Chau, Bao Pham
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
30 tháng 8 2020 lúc 21:58

A = x2 - 10x + 12

= ( x2 - 10x + 25 ) - 13

= ( x - 5 )2 - 13

( x - 5 )2 ≥ 0 ∀ x => ( x - 5 )2 - 13 ≥ -13

Đẳng thức xảy ra <=> x - 5 = 0 => x = 5

=> MinA = -13 <=> x = 5

B = 6y2 + 4y - 1

= 6( y2 + 2/3y + 1/9 ) - 5/3

= 6( y + 1/3 )2 - 5/3

6( y + 1/3 )2 ≥ 0 ∀ x => 6( y + 1/3 )2 - 5/3 ≥ -5/3

Đẳng thức xảy ra <=> y + 1/3 = 0 => y = -1/3

=> MinB = -5/3 <=> y = -1/3

C = x2 + y2 - 2x - 6y - 1

= ( x2 - 2x + 1 ) + ( y2 - 6y + 9 ) - 11

= ( x - 1 )2 + ( y - 3 )2 - 11

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y-3\right)^2-11\ge-11\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

=> MinC = -11 <=> x = 1 ; y = 3

D = 2x2 + 3y2 - x - 3y + 5

= 2( x2 - 1/2x + 1/16 ) + 3( y2 - y + 1/4 ) + 33/8

= 2( x - 1/4 )2 + 3( y - 1/2 )2 + 33/8

\(\hept{\begin{cases}2\left(x-\frac{1}{4}\right)^2\ge0\forall x\\3\left(y-\frac{1}{2}\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x-\frac{1}{4}\right)^2+3\left(y-\frac{1}{2}\right)^2+\frac{33}{8}\ge\frac{33}{8}\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{4}=0\\y-\frac{1}{2}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{1}{2}\end{cases}}\)

=> MinD = 33/8 <=> x = 1/4 ; y = 1/2

Khách vãng lai đã xóa
trần thị hoàng yến
Xem chi tiết
nguyenvankhoi196a
5 tháng 11 2017 lúc 17:11

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

Đường Quỳnh Giang
30 tháng 9 2018 lúc 5:18

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

chintcamctadungnennoitrc...
Xem chi tiết
Dương Ngọc Nguyễn
13 tháng 9 2021 lúc 15:25

undefined

Quỳnh Anh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
11 tháng 10 2020 lúc 21:05

1/

( a + b )3 + ( a - b )3 - 6ab2 < đã sửa >

= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3 - 6ab2

= 2a3 

2/

A = x2 + y2 - 2x - 4y + 6 = ( x2 - 2x + 1 ) + ( y2 - 4y + 4 ) + 1 = ( x - 1 )2 + ( y - 2 )2 + 1 ≥ 1 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 2

=> MinA = 1 <=> x = 1 ; y = 2

B = 2x2 + 8x + 10 = 2( x2 + 4x + 4 ) + 2 = 2( x + 2 )2 + 2 ≥ 2 ∀ x

Dấu "=" xảy ra khi x = -2

=> MinB = 2 <=> x = -2

C = 25x2 + 3y2 - 10x + 11 = ( 25x2 - 10x + 1 ) + 3y2 + 10 = ( 5x - 1 )2 + 3y2 + 10 ≥ 10 ∀ x, y

Dấu "=" xảy ra khi x = 1/5 ; y = 0

=> MinC = 10 <=> x = 1/5 ; y = 0

D = ( x - 3 )2 + ( x - 11 )2

Đặt t = x - 7

D = ( t + 4 )2 + ( t - 4 )2

    = t2 + 8t + 16 + t2 - 8t + 16

    = t2 + 32 ≥ 32 ∀ t

Dấu "=" xảy ra khi t = 0

=> x - 7 = 0 => x = 7

=> MinD = 32 <=> x = 7

Khách vãng lai đã xóa
Quỳnh Anh
11 tháng 10 2020 lúc 21:08

Cảm ơn bn nhiều nhé!

Khách vãng lai đã xóa
Ngô Chi Lan
11 tháng 10 2020 lúc 21:57

Bài 1:

\(\left(a+b\right)^3+\left(a-b\right)^3-6ab^2\)

\(=2a\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)-6ab^2\)

\(=2a\left(a^2+3b^2\right)-6ab^2\)

\(=2a^3+6ab^2-6ab^2\)

\(=2a^3\)

Bài 2:

\(A=x^2+y^2-2x-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)

Dấu"=" xảy ra khi \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)

Vậy...

\(B=2x^2+8x+10\)

\(=2\left(x^2+4x+4\right)+2\)

\(=2\left(x+2\right)^2+2\ge2\forall x\)

Dấu"="xảy ra khi \(x+2=0\Leftrightarrow x=-2\)

Vậy...

Khách vãng lai đã xóa
Nguyễn Hoài An
Xem chi tiết
Lấp La Lấp Lánh
5 tháng 10 2021 lúc 17:02

a) \(=x^2-\left(2y\right)^2=\left(x-2y\right)\left(x+2y\right)\)

b) \(=x^2-\left(3y\right)^2=\left(x-3y\right)\left(x+3y\right)\)

c) \(=\left(2x-1\right)^2-\left(2y\right)^2=\left(2x-1-2y\right)\left(2x-1+2y\right)\)

d) \(=x^2-10xy+\left(5y\right)^2=\left(x-5y\right)^2\)

e) \(=\left(3x\right)^2-6x+1=\left(3x-1\right)^2\)

f) \(=\left(5x\right)^2+20x+4=\left(5x+2\right)^2\)

Shauna
5 tháng 10 2021 lúc 17:06

\(a)x^2-4y^2=(x-2y)(x+2y)\\b)x^2-9y^2=(x-3y)(x+3y)\\c)(2x-1)^2-4y^2=(2x-1-2y)(2x-1+2y)\\d) x^2-10xy+25y^2=(x-5y)^2\\e)9x^2-6x+1=(3x-1)^2\\f)25x^2+20x+4=(5x+2)^2\)