cho x,y là số thực tm (x+ \(\sqrt{1+x^2}\))(y+ \(\sqrt{1+y^2}\)) =3
tính tổng x+y
cho x,y,z là 3 số thực tm \(x+y+z=18\sqrt{2}\).
Cmr \(\dfrac{1}{\sqrt{x\left(y+z\right)}}+\dfrac{1}{\sqrt{y\left(z+x\right)}}+\dfrac{1}{\sqrt{z\left(x+y\right)}}+2\ge\dfrac{9}{4}\)
mng tham khảo
\(\sqrt{2x\left(y+z\right)}< =\dfrac{2x+y+z}{2}\)
=>\(\dfrac{1}{\sqrt{x\left(y+z\right)}}>=\dfrac{2\sqrt{2}}{2x+y+z}\)
=>\(P>=2\sqrt{2}\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)
\(\Leftrightarrow P>=2\sqrt{2}\cdot\dfrac{\left(1+1+1\right)^2}{\left(2x+y+z\right)+x+2y+z+x+y+2z}=\dfrac{18\sqrt{2}}{4\cdot18\sqrt{2}}=\dfrac{1}{4}\)
Dấu = xảy ra khi x=y=z=6căn 2
1.tìm các số thực x,y tm
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\)
Áp dụng BĐt bu-nhi-a, ta có
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\sqrt{\left(x^2+y^2+z^2\right)\left(6-x^2-y^2-z^2\right)}\)
Áp dụng BĐt cô-si, ta có
\(\sqrt{\left(x^2+y^2+z^2\right)\left(6-x^2-y^2-z^2\right)}\le\frac{x^2+y^2+z^2+6-x^2-y^2-z^2}{2}=3\)
=> VT <=VP
Dấu = xảy ra là của BĐT cô-si và bu-nhi-a,
Bạn tự tìm nhá, t nhác làm tiếp lắm
^^
cho x,y,zlà các số thực dương tm: x+y+z=3.CMR P=\(x\sqrt{y^3+1}+y\sqrt{z^3+1}+z\sqrt{x^3+1}\)
cho các số thực dương tm: \(x+y+z=< \sqrt{3}\) tìm GTLN của M=\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\)
Theo điều kiện giả thiết, ta có:\(\sqrt{3}\ge x+y+z\Rightarrow3\ge\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\Rightarrow xy+yz+zx\le1\)\(\Rightarrow VT\le\frac{x}{\sqrt{x^2+xy+yz+zx}}+\frac{y}{\sqrt{y^2+xy+yz+zx}}+\frac{z}{\sqrt{z^2+xy+yz+zx}}=\sqrt{\frac{x}{x+y}.\frac{x}{x+z}}+\sqrt{\frac{y}{y+x}.\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}.\frac{z}{z+y}}\)\(\le\frac{\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}}{2}=\frac{3}{2}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\)
cho x,y,zlà các số thực dương tm: x+y+z=3.CMR P=\(x\sqrt{y^3+1}+y\sqrt{z^3+1}+z\sqrt{x^3+1}\) =<5
Câu hỏi của Lê Tài Bảo Châu - Toán lớp 9 - Học toán với OnlineMath
Cho 3 số thực dương x,z,y tm x+y+z=\(\sqrt{2}\). Tìm MIN T=\(\sqrt{(x+y)(y+z)(x+z)}(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{y+x}}{z}+\frac{\sqrt{x+z}}{y})\)
cho các số thực x,y tm đk
\(\sqrt{x^2+11}+\sqrt{x-2018}+x^2\)=\(\sqrt{y^2+11}+\sqrt{y-2018}+y^2\)
tính giá trị biểu thức m=x^11-x^2010
Cho x,y là các số thực dương thỏa mãn: (x+\(\sqrt{x^2+1}\))(y+\(\sqrt{y^2+1}\))=2
Tính Q= \(x\sqrt{y^2+1}\)+y\(\sqrt{x^2+1}\)
Lời giải:
$(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=2$
$\Leftrightarrow (x+\sqrt{x^2+1})(x-\sqrt{x^2+1})(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$
$\Leftrightarrow -(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$
$\Leftrightarrow 2x+\sqrt{y^2+1}=2\sqrt{x^2+1}-y$
$\Rightarrow (2x+\sqrt{y^2+1})^2=(2\sqrt{x^2+1}-y)^2$
$\Leftrightarrow 4x^2+y^2+1+4x\sqrt{y^2+1}=4(x^2+1)+y^2-4y\sqrt{x^2+1}$
$\Leftrightarrow 4(x\sqrt{y^2+1})+y\sqrt{x^2+1})=3$
$\Leftrightarrow 4Q=3$
$\Leftrightarrow Q=\frac{3}{4}$
Cho x,y>0 tm xy+x+y=1. Tính
\(S=x\sqrt{\frac{2\left(1+y^2\right)}{1+x^2}}+y\sqrt{\frac{2\left(1+x^2\right)}{1+y^2}}+\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{2}}\)