Tam giác ABC vuông tại A có đường cao AH. biết AB = 4cm, HC = 15cm. Tính độ dài đoạn thẳng BH
Cho tam giác ABC vuông tại A đường cao AH=3cm, BH=4cm. Tính độ dài các đoạn thẳng HC,BC,AB,AC
Ta có:
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{3^2}{4}=\dfrac{9}{4}\left(cm\right)\)
\(BC=BH+HC=4+\dfrac{9}{4}=9\left(cm\right)\)
\(AB=\sqrt{BH.BC}=\sqrt{4.9}=6\left(cm\right)\)
\(AC=\sqrt{CH.BC}=\sqrt{\dfrac{9}{4}.9}=\dfrac{9}{2}\left(cm\right)\)
\(AH^2=BH.HC\) (trong tg vuông bình phương đường cao hạ từ đỉnh góc vuông xuống cạnh huyền bằng tích hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền)
\(\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{3^2}{4}=2,25cm\)
\(BC=BH+HC=4+2,25=6,25cm\)
\(AB^2=BH.BC\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giwac hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
\(\Rightarrow AB=\sqrt{BH.BC}=\sqrt{4.6,25}=5cm\)
\(AC=\sqrt{BC^2-AB^2}\) (Pitago)
\(\Rightarrow AC=\sqrt{6,25^2-5^2}=3,75cm\)
Cho tam giác ABC vuông tại A có đường cao AH. Cho biết AB = 15cm, AH = 12cm
a) Chứng minh: ΔAHB đồng dạng ΔCHA
b) Tính độ dài các đoạn thẳng BH, HC, AC
c) Trên cạnh AC lấy điểm E sao cho CE = 5cm, trên cạnh BC lấy điểm F sao cho CF = 4cm. Chứng minh tam giác CEF vuông và CE.CA = CF.CB
a: Xet ΔAHB vuông tại H và ΔCHA vuông tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)
HC=12^2/9=16cm
CA=căn 16*25=20cm
c: CF/CA=4/20=1/5
CE/CB=5/25=1/5
=>CF/CA=CE/CB
=>ΔCFE đồng dạng với ΔCAB
=>góc CFE=90 độ
=>ΔCFE vuông tại F
Cho tam giác ABC vuông tại A có đường cao AH. Cho biết AB = 15cm, AH = 12cm
a) Chứng minh: ΔAHB đồng dạng ΔCHA
b) Tính độ dài các đoạn thẳng BH, HC, AC
c) Trên cạnh AC lấy điểm E sao cho CE = 5cm, trên cạnh BC lấy điểm F sao cho CF = 4cm. Chứng minh tam giác CEF vuông và CE.CA = CF.CB
Cho tam giác ABC vuông tại A có đường cao AH.Cho biết: AB=15cm, AH=12cm
a) CM: tam giác ABH và tam giác CHA đồng dạng
b) Tính độ dài các đoạn thẳng BH,HC,AC ?
c) Trên cạnh AC lấy điểm E sao cho CE=5cm, trên cạnh BC lấy điểm F sao cho CF=4cm. Chứng minh tam giác CEF vuông ?
d) CM: CE.CA=CF.CB ?
a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạngvới ΔHCA
b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)
BC=15^2/9=25(cm)
\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)
c: CE/CB=CF/CA
góc C chung
=>ΔCEF đồng dạng với ΔCBA
=>góc CFE=góc CAB=90 độ
=>ΔCEF vuông tại F
d: CE/CB=CF/CA
=>CE*CA=CF*CB
Cho tam giác abc vuông tại a có đường cao ah. Cho biết ab=15cm, ah=12cm a. Chứng minh tam giác abh, tam giác cha đồng dạng b. Tính độ dài đoạn thẳng hb, hc, ac
a, Xét tam giác ABH và tam giác CAH ta có :
^AHB = ^CHA = 900
^BAH = ^HCA ( cùng phụ ^HAC )
Vậy tam giác ABH ~ tam giác CAH ( g.g )
b, Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác AHB vuông tại H
\(AB^2=BH^2+AH^2\Rightarrow BH^2=AB^2-AH^2=225-144=81\Rightarrow BH=9\)cm
* Áp dụng hệ thức :
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{144}{9}=16\)cm
=> BC = HC + HB = 16 + 9 = 25 cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\)cm
a) Xét ΔBHA vuông tại H và ΔAHC vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{B}\right)\)
Do đó: ΔBHA\(\sim\)ΔAHC(g-g)
Cho tam giác ABC vuông tại a, vẽ đường cao AH. Biết AB=6,5cm BH=2,5cm tính độ dài các đoạn thẳng AH, HC, BC, AC
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(BC\cdot2,5=6,5^2\)
=>\(BC=\dfrac{6.5^2}{2.5}=16,9\left(cm\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA=\sqrt{6.5^2-2.5^2}=6\left(cm\right)\)
HC+HB=BC
=>HC+2,5=16,9
=>HC=14,4(cm)
ΔAHC vuông tại H
=>\(HA^2+HC^2=AC^2\)
=>\(AC^2=14,4^2+6^2=243,86\)
=>AC=15,6(cm)
Cho tam giác ABC vuông tại A vẽ đường cao AH. Biết AB=6 cm ,AC=8cm. Tính độ dài các đoạn thẳng BH,HC,AH
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>BC=10(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên AH*BC=AB*AC
=>AH*10=6*8=48
=>AH=4,8(cm)
ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}BH\cdot BC=BA^2\\CH\cdot CB=CA^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}BH=\dfrac{6^2}{10}=3,6\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A có đường cao AH. Cho biết AB=15cm, AH=12cm.
a) Chứng minh tam giác AHB, CHA đồng dạng
b) Tính độ dài đoạn thẳng HB, HC, AC
c) Trên AC lấy điểm E sao cho CE=5cm, trên BC lấy F sao cho CF=4cm. Chứng minh tam giác CEF vuông
d) Chứng minh CE.CB=CF.CA
cho tam giác abc vuông tại a có đường cao ah.cho biết ab=15cm ah=12cm
a) cm tam giác ahd đồng dạng tam giác cha
b) tính độ dài các đoạn thẳng bh,hc
chỉ em với ạ
a) Sửa đề: C/m tam giác AHB đồng dạng với tam giác CHA
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\left(=90^0-\widehat{ABC}\right)\)
Do đó: ΔAHB∼ΔCHA(g-g)