Cho tam giác ABC. Hãy kẽ
- CF vuông góc với AB
- BE vuông góc với AC
Biết AB<AC
CMR:CF>BE
cho tam giác ABC , vẽ BE vuông góc AC tại E , vẽ CF vuông góc với AB tại F . Cho BE + AC = BA + CF . CMR tam giác ABC cân tại A
Trên tia đối của BE lấy điểm M sao cho BM=AC
Trên tia đố của CF lấy điểm N sao cho CN=AB.
Ta có: ^ABE+^BAE=^ABE+^BAC=900 (vì tam giác AEB vuông tại E)
Tương tự: ^ACF+^CAF=^ACF+^BAC=900
=> ^ABE=^ACF => 1800 - ^ABE = 1800 - ^ACF => ^MBA=^ACN
Xét \(\Delta\)BMA và \(\Delta\)CAN:
BM=AC
^MBA=^ACN => \(\Delta\)BMA=\(\Delta\)CAN (c.g.c)
AB=CN
=> MA=AN (2 cạnh tương ứng)
Lại có: BE+AC=BA+CF (giả thiết). Thay AB=CN, AC=BM, ta được:
BE+BM=CN+CF => EM=FN
Xét \(\Delta\)AEM và \(\Delta\)AFN:
AM=AN (cmt)
^AEM=^AFN=900 => \(\Delta\)AEM=\(\Delta\)AFN (Cạnh huyền cạnh góc vuông)
EM=FN
=> ^AME=^ANF (2 góc tương ứng) hay ^AMB=^ANC (1)
Mà \(\Delta\)BMA=\(\Delta\)CAN (cmt) => ^AMB=^NAC (2)
Từ (1) và (2) => ^ANC=^NAC => \(\Delta\)ACN cân tại C => AC=CN.
Mà CN=AB => AB=AC => \(\Delta\)ABC cân tại A (đpcm).
Ta có AB=AC
=> △ABC cân tại A => góc ABc=góc ACB hay góc FBC=góc ECB
ta có BE⊥AC=> góc CEB=90 độ
CF⊥AB => góc BFC = 90 độ
Xét △BFC (góc BFC = 90 độ)và△CEB(góc CEB= 90 độ )có
góc FBC =góc ECB (chứng minh trên )
BC là cạnh huyền chung
=> △BFC= △CEB(cạnh huyền -góc nhọn)
Vậy △BFC= △CEB
Cho tam giác ABC có AB = AC, BE vuông góc với AC, CF vuông góc với AB, BE cắt CF tại O. Chứng minh :
a, BE=CF
b, AO là tia phân giác của góc BAC
c, AO vuông góc BC
Bạn ơi mik ko làm được nữa mik viết giàn ý đc ko
Giàn ý:
a) C/M 2 tam giác trên bằng nhau theo trương hợp cạnh huyền góc nhọn
=>BE =EF( vì là 2 cạnh t/ư)
b) C/M AE=AF( theo phương pháp cộng đoạn thẳng)
C/M 2 tam giác AOF = AOE ( cạnh huyền cạnh góc vuông)
=> 2 góc FAO = OAE (vì là 2 góc t/ư )
Mà tia AO nằm trong góc FAE nên Ao là tia pg của góc FAE
c) Gọi điểm ở giữa B và C là K
C/M 2 tam giác AKB = AKC (c.g.c)
=>góc AKB = góc AKC( vì.....)
Mà 2 góc đó cộng vs nhau bằng 180 độ( kb)
=> 1 trong 2 góc bằng 90 độ
=> AK ( hoặc AO) vuông góc vs BC
có gì sai sót mong bạn thông cảm
nếu đúng mik nha
Cho tam giác ABC. Kẻ BE vuông góc với AC, kẻ CF vuông góc với AB( E thuộc AC, F thuộc AB). Gọi O là giao điểm của BE, CF. Biết OC=AB. Tính góc ACB
Xét Δ vuông ABE và Δ vuông OCE có:
AB=OC (giả thiết)
gócABE=gócOCE (cùng phụ với gócA)
⇒Δ vuông ABE=Δ vuông OCE (ch-gn)
⇒BE=CE ⇒ΔBEC vuông cân tại đỉnh E
⇒gócACB=\(\dfrac{180độ-gócE}{2}\)=\(\dfrac{180độ-90độ}{2}\)=45độ
Vậy....
cho tam giác ABC có 3 góc nhọn. và AB<AC
kẻ BE vuông góc với Ac tại E, CF vuông góc với AB tại F, BE cắt CF tại H
kẻ HQ song song với AC, HP song song với AB ( Q thuộc AB, P thuộc AC)
a) cm: Tam giác AHQ=tam giác HAP
b) cho M là trung điểm của BC.
cm: tam giác MEF cân và góc AEF=góc ABC
c) cm: HA+HB+HC<2/3(AB+AC+BC)
a: Xét tứ giác AQHP có
AQ//HP
AP//HQ
=>AQHP là hình bình hành
Xet ΔAHQ và ΔHAP có
HA chung
HQ=AP
AQ=HP
=>ΔAHQ=ΔHAP
b: ΔFBC vuông tại F
mà FM là trung tuyến
nên FM=BC/2
ΔECB vuông tại E
mà EM là trung tuyến
nên EM=BC/2=FM
=>ΔMEF cân tại M
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AEF=góc ABC
Cho tam giác ABC cân tại A .Vẽ BE vuông góc với AC và CF vuông góc với AB ?
Cho tam giác ABC. Kẻ BE vuông góc với AC, CF vuông góc với AB ( E thuộc AC, F thuộc AB ). Gọi O là giao điểm của BE và CF. Biết OC = AB. Tính góc ACB
Tam giác ABE = OCE nên BE=CE. Ta có góc C = 45 độ
Cho tam giác ABC có AB = AC. Kẻ BE Vuông góc với AC tại E, CF vuông góc với AV tại F, BE cắt CF tại I. Chứng minh rằng AE = AF
Lời giải:
Xét tam giác $ABE$ và $ACF$ có:
$\widehat{A}$ chung
$AB=AC$ (gt)
$\widehat{AEB}=\widehat{AFC}=90^0$
$\Rightarrow \triangle ABE=\triangle ACF$ (ch-gn)
$\Rightarrow AE=AF$
cho tam giác ABC cân tại A và các điểm E,F lần lượt nằm trên các cạnh AC,AB sao cho BE vuông góc với AC,CF vuông góc với AB(H4.69).Chứng mình BE=CF
Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
=>BE=CF