Rút gọn S=\(\frac{n!}{m!\left(n-m\right)!}\)biết n>m. HELP ME PLEASE
Cho \(A=\left(\sqrt{m+\frac{2mn}{1-n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\left(m\ge0,n>1\right)\)
a,Rút gọn A
b,Tính A biết \(m=\sqrt{56+24\sqrt{5}}\)
c,Tìm GTNN của A
\(A=\left(\sqrt{m+\frac{2mn}{1-n^2}}+\sqrt{m-\frac{2mn}{1+n^2}}\right)\sqrt{1+\frac{1}{n^2}}\)
Biến đổi ta được : \(\left(\sqrt{a'b}-\sqrt{ab'}\right)^2+\left(\sqrt{a'c}-\sqrt{ac'}\right)^2+\left(\sqrt{b'c}-\sqrt{bc'}\right)^2=0\)
Làm được câu nào thì giúp mình với!!!
1. Rút gọn: \(\left(\frac{y^2-yz-z^2}{x}+\frac{x^2}{y+z}-\frac{3}{\frac{1}{y}+\frac{1}{z}}\right).\frac{\frac{2}{y}+\frac{2}{z}}{\frac{1}{yz}+\frac{1}{xy}+\frac{1}{xz}+\left(x+y+z\right)^2}\)
2. Tính giá trị của biểu thức:
\(A=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right)\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)\)biết \(m+n+p=0\)
\(\frac{\left(m-n\right)^3-p^3}{m-n-p}\)Rút gọn phân thức trên
\(\frac{\left(m-n\right)^3-p^3}{m-n-p}=\frac{\left(m-n-p\right)\left[\left(m-n\right)^2+p\left(m-n\right)+p^2\right]}{m-n-p}=m^2-2mn+n^2+mp-np+p^2\)
Rút gọn biểu thức sau
\(D=n^2\left(n+4\right)\left(n-4\right)+\left(1-n^2\right)\left(n^2+1\right)\)
\(E=\left(\frac{1}{2}x^m-y^n\right)×\left(y^n+\frac{1}{2}x^m\right)\)
Giúp mình với !!!
Biết m+n+p=0. tính giá trị của biểu thức
\(S=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right)\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)\)
đặt \(A=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right)\)
\(\Rightarrow S=A.\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)=A.\frac{p}{m-n}+A.\frac{m}{n-p}+A.\frac{n}{p-m}\)
giờ ta xét từng hạng tử 1 nhé:
\(A.\frac{p}{m-n}=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right).\frac{p}{m-n}\)
\(=1+\frac{p}{m-n}.\left(\frac{n-p}{m}+\frac{p-m}{n}\right)\)
\(=1+\frac{p}{m-n}.\left(\frac{\left(n-p\right).n+m.\left(p-m\right)}{m.n}\right)\)
\(=1+\frac{p}{m-n}.\left(\frac{n^2-pn+m.p-m^2}{m.n}\right)\)
\(=1+\frac{p}{m-n}.\left(\frac{\left(n-m\right).\left(n+m\right)+p.\left(m-n\right)}{m.n}\right)\)
\(=1+\frac{p}{m-n}.\left(\frac{\left(p-m-n\right).\left(m-n\right)}{m.n}\right)\)
\(=1+\frac{p.\left(p-m-n\right)}{m.n}\)
\(=1+\frac{p^2-p.\left(m+n\right)}{m.n}\)
bây h ta sẽ sử dụng giả thiết \(m+n+p=0\Rightarrow m+n=-p\)
\(\Rightarrow A.\frac{p}{m-n}=1+\frac{p^2+p^2}{m.n}=1+\frac{2p^3}{m.n.p}\)
CM tương tự ta có: \(A.\frac{m}{n-p}=\frac{2m^3}{mnp}\) ; \(A.\frac{n}{p-m}=\frac{2n^3}{mnp}\)
\(\Rightarrow S=A.\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)=A.\frac{p}{m-n}+A.\frac{m}{n-p}+A.\frac{n}{p-m}=3+\frac{2\left(p^3+m^3+n^3\right)}{m.n.p}\)
\(m+n+p=0\Rightarrow\left(m+n+p\right).\left(m^2+p^2+n^2-mn-mp-np\right)=0\Leftrightarrow m^3+n^3+p^3-3mnp=0\)
\(\Leftrightarrow m^3+n^3+p^3=3mnp\)
\(S=3+\frac{2.3mnp}{mnp}=3+6=9\)
Vậy \(S=9\Leftrightarrow m+n+p=0\)
Tìm tất cả các só tự nhiên n để phân số \(\frac{18n+3}{21n+7}\) có thể rút gọn được.
Mình đang cần gấp.
HELP ME, PLEASE!!!☹☹☹
Câu hỏi của Trần Đức Kiên - Toán lớp 6 - Học toán với OnlineMath
Gọi d là ƯCLN(18n+3, 21n+7) (d ∈ N)
Để phân số \(\frac{18n+3}{21n+7}\) có thể rút gọn được, d phải khác 1.
Ta có:
\(6\left(21n+7\right)-7\left(18n+3\right)⋮d\)
\(\Rightarrow21⋮d\) ⇒ d ∈{1,3,7,21}
Mà d phải khác 1 và 21n+7 không chia hết cho 3 và 21 suy ra d=7
Vậy mọi số tự nhiên n thỏa mãn ƯCLN(18n+3, 21n+7) là 7 thì phân số có thể rút gọn đc.
Mk ko chắc lắm :v
Rút gọn:
B=\(\left(\frac{n}{m-n}+\frac{m}{m+n}\right)\left(\frac{m^2}{n^2}+\frac{n^2}{m^2}-2\right):\frac{m^4-n^4}{m^2.n^2}\)
Rút gọn biểu thức : ( làm đi Ngân )
\(\frac{\left[\left(a-n\right)^2-\left(a+n\right)^2\right].\left[\left(h-y\right)^2-\left(h+y\right)^2\right]}{e.4.4.m}.\frac{e}{u^{-1}}\)
HELP ME, PLEASE!!!
Hàm số f cho bởi công thức:
f(x) \(\left\{{}\begin{matrix}5x-4\left(x\ge\dfrac{4}{5}\right)\\4-5x\left(x< \dfrac{4}{5}\right)\end{matrix}\right.\)
a) f có thể viết gọn bằng công thức nào?
b) Tìm x để f(x)=6.
a: f(x)=|5x-4|
b: f(x)=6
=>|5x-4|=6
=>5x-4=6 hoặc 5x-4=-6
=>5x=10 hoặc 5x=-2
=>x=2 hoặc x=-2/5