Tìm các số tự nhiên n để\(C=n^3-n^2+n-1\)là số nguyên tố
1. Tìm các số tự nhiên n để \(n^5+n^4+1\)là số nguyên tố.
2. Tìm các số tự nhiên n để \(n^8+n+1\)là số nguyên tố.
Cảm ơn các bạn!
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
1) Để n5+n4+1 là số chính phương thì \(\orbr{\begin{cases}n^2+n+1=1\\n^5+n^4+1=n^2+n+1\end{cases}}\)
TH1: \(n^2+n+1=1\Leftrightarrow n\left(n+1\right)=0\Leftrightarrow n=0\left(n\inℕ\right)\)
Thử lại sai
TH2: \(n^2+n+1=n^5+n^4+1\)
\(\Leftrightarrow n^5-n^2+n^4-n=0\)
\(\Leftrightarrow n\left(n^3-1\right)\left(n+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n=1\\n=0\end{cases}}\)
Thử lại thấy n=1 thỏa mãn
Vậy n=1
1a) Tìm các số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
b)Tìm các số nguyên tố p đẻ 13p+1 là lập phương của 1 số tự nhiên
2) Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng: có vô số số tự nhiên n thỏa mãn n.2^n-1 chia hết cho p
3) Tìm n thuộc N* để: a) n^4+4 là số nguyên tố
b)n^2003+n^2002+1 là số nguyên tố
1.Tìm 2 số nguyên tố liên tiếp có tổng của chúng cũng là số nguyên tố.
2. Tìm số tự nhiên n để 19.n là số nguyên tố.
3. Tìm số tự nhiên p để :( p + 1 ) . ( p + 7 ) là số nguyên tố
Trình bày đầy đủ giúp mk vs nhé. Cảm ơn các bn rất nhìu. <3
a) gs cả 2 số đều lẻ thì tổng chẵn
mà 2 số nguyên tố lẻ nên >2 => tổng >2 mà tổng chẵn => ko là sô nguyên tố => trái đề bài
suy ra 1 trong 2 số là số chẵn mà 2 số là số nguyên tố => một số =2
mà 2 số này là 2 số nguyên tố liên tiếp nên số còn lại là 3
b) đặt 19n=p ( p nguyên tố);
vì p nguyên tố nên phân tích p thành tích 2 số tự nhiên ta có p=p*1
=> p=19;n=1
c)đặt (p+1)(p+7)=a ( a nguyên tố)
vì a nguyên tố nên phân tích a thành tích 2 số tự nhiên ta có a=a*1; mà p+1<p+7
nên p+1=1 và p+7=a => p=0;a=7
Nhưng bn cho mk hỏi p*1 là gì vậy
1.Tìm số nguyên n sao cho n^2+3 là số chính phương
2.Tìm số tự nhiên n để n^2+3n+2 là số nguyên tố
3.Tìm số nguyên tố p để p+1 là số chính phương
Bài 3. Tìm số tự nhiên n để các số:
a) p = (3- 1) x ( n + 1 ) là số nguyên tố;
b) q = (n-2) x (n^2 + n - 5 ) là số nguyên tố.
Câu a:
P = (3 - 1).(n + 1)
P = 2.(n + 1)
P là số nguyên tố khi và chỉ khi n + 1 = 1
n + 1 = 1
n = 1 - 1
n = 0
Vậy với n = 0 thì p = (3 - 1).(n + 1) là số nguyên tố
b; q = (n- 2).(n\(^2\) + n - 5)
Nếu n = 0 thì :
q = (0 - 2).(0 + 0 - 5) = 10 (loại)
Nếu n = 1 thì:
q = (1 - 2)(1 + 1 - 5)
q = -1.(2 - 5)
q = -1.(-3)
q = 3 (nhận)
nếu n = 2 thì
Q = (2 - 2).(4 + 2 - 5) = 0 (loại)
nếu n = 3 thì
q = (3 - 2)(9 + 3 - 5)
q = 1(12 - 5)
q = 7 (nhận)
nếu n ≥ 5 thì n - 2 ≥ 2; n\(^2+n-5\) ≥ 16 + 4 - 5 = 15
q là hợp số (loại)
Vậy n ∈ {1; 3}
Tìm n là số tự nhiên để 2^n +1 và 2^n -1 là các số nguyên tố?
a) Tìm số nguyên dương n để 4n +4 là số nguyên tố
b) Tìm số nguyên dương n để n3 - n2 +n - 1 là số nguyên tố
c) Tìm số tự nhiên nhỏ nhất n để n4 + (n+1)4 là hợp số
Bài 1. Tìm số tự nhiên a nhỏ nhất để a : 7 dư 4; a : 9 dư 5 và a : 15 dư 8.
Bài 2. a) Tìm số tự nhiên n để 16 – 3n là ước của 2n + 1.
b) Tìm số tự nhiên n để n2 + 6n là số nguyên tố.
Bài 3. a) Tìm số nguyên tố p sao cho p + 2; p + 6; p + 8; p + 12; p + 14 cũng là số nguyên tố
b) Tìm số tự nhiên n để các số sau nguyên tố cùng nhau: 4n – 3 và 6n + 1
Tìm tất cả các số tự nhiên n để n2+16n là số nguyên tố
Tìm tất cả các số tự nhiên a để19a-8a là số nguyên tố
Tìm tất cả các số tự nhiên để 3n+60 là số nguyên tố