trong k số nguyên liên tiếp có 1 và chỉ một số nguyên chia hết cho k
Chứng minh trong k số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho k
chứng mih rằng
trog k số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho k
Chứng tỏ rằng
a) Trong 2 số nguyên liên tiếp có một và chỉ một số chia hết cho 2
b) Trong 3 số nguyên liên tiếp có một và chỉ một số chia hết cho 3
a ) Gọi 2 số nguyên liên tiếp lần lượt là a và a + 1
* Nếu a là số chẵn => a chia hết cho 2
* Nếu a là số lẻ => a + 1 là số chẵn => a + 1 chia hết cho 2
Vậy trong 2 số nguyên liên tiếp có 1 số chia hết cho 2 .
b ) Gọi 3 số nguyên liên tiếp lần lượt là a , a + 1 và a + 2
* Nếu a chia hết cho 3 thì bài toán luôn đúng
* Nếu a chia 3 dư 1 thì a = 3k +1
=> a + 2 = 3k + 1 + 2 = 3k + 3
=> a + 2 chia hết cho 3
* Nếu a chia 3 dư 2 thì a = 3k + 2
=> a + 1 = 3k + 2 + 1 = 3k + 3
=> a + 1 chia hết cho 3
Vậy trong 3 số nguyên liên tiếp có 1 số chia hết cho 3 .
a) Trong hai số nguyên liên tiếp có một và chỉ một số chia hết cho 2.
b) Trong ba số nguyên liên tiếp có một và chỉ một số chia hết cho 3.
a,
Gọi 2 số nguyên liên tiếp lần lượt là a và a+1
* Nếu a là số chẵn => a chia hết cho 2
* Nếu a là số lẻ => a + 1 là số chẵn => a+1 chia hết cho 2
Vậy trong 2 số nguyên liên tiếp có 1 số chia hết cho 2
b,
Gọi 3 số nguyên liên tiếp lần lượt là a, a+1 và a+2
*Nếu a chia hết cho 3 thì bài toán luôn đúng
*Nếu a chia 3 dư 1 thì a = 3k +1
=> a + 2 = 3k + 1 + 2 = 3k + 3
=> a + 2 chia hết cho 3
*Nếu a chia 3 dư 2 thì a = 3k + 2
=> a +1 = 3k + 2 + 1 = 3k + 3
=> a + 1 chia hết cho 3
Vậy trong 3 số nguyên liên tiếp có 1 số chia hết cho 3
\(CMR:\)
a,Trong hai số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 2
b,Trong ba số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 3
c,Tổng của 3 số nguyên liên tiếp chia hết cho 3
d,Tổng của 5 số nguyên liên tiếp chia hết cho 5
e,Tổng của n số nguyên lẻ liên tiếp chia hết cho n
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5
Chứng tỏ rằng :
1/Trong ba số nguyên liên tiếp có một số chia hết cho 3
2/Trong bốn số nguyên liên tiếp có một số chia hết cho 4
1/Trong ba số nguyên liên tiếp có một số chia hết cho 3
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 .
2/Trong bốn số nguyên liên tiếp có một số chia hết cho 4
Bốn số tự nhiên liên tiếp khi chia cho 4 sẽ được 4 số dư khác nhau.
Tức là ngoài số dư là 1, 2, 3 phải có một phần dư là 0
Kết luận: luôn tồn tại 1 số chia hết cho 4.
.
Có thể suy luận bằng cách giả sử:
n, (n+1), (n+2), (n+3)
1.Nếu n chia hết cho 4 => ĐPCM
2. nếu n chia 4 dư 1 => (n+3) sẽ chia hết cho 4
3. nếu n chia 4 dư 2 => (n+2) sẽ chia hết cho 4
4. nếu n chia 4 dư 3 => (n+1) sẽ chia hết cho 4
Chứng tỏ rằng :
1/Trong ba số nguyên liên tiếp có một số chia hết cho 3
2/Trong bốn số nguyên liên tiếp có một số chia hết cho 4
Chứng tỏ rằng trong hai số tự nhiên chẵn liên tiếp thì luôn có một và chỉ một số chia hết cho 4(xét hai số tự nhiên chẵn liên tiếp a=2k và a+2=2k+2 ( với k thuộc n) rồi xét trường hợp k là số chẵn k là số lẻ)
Chứng tỏ:
Trong 4 số tự nhiên liên tiếp,có 1 số và chỉ 1 số chia hết cho 4.(nhanh mk k)
Xét Ví dụ:
3,4,5,6 có 4\(⋮\)4
Lấy thêm ví dụ tương tự sẽ CM đc điều cần CM
Mk chỉ bt thế thôi
Xét, Ví dụ :
3;4;5;6; có 4 : 4
Lấy thêm ví dụ tương tự sẽ CM đc điều cần CM