Giải pt : \(\frac{x-8}{x-7}=\frac{1}{7-x}+8\)
Giải pt :
\(\frac{x-1}{99}+\frac{x-2}{49}+\frac{x-7}{31}+\frac{x-8}{23}=10\)
\(\frac{x-1}{99}-1+\frac{x-2}{49}-2+\frac{x-7}{31}-3+\frac{x-8}{23}-4=0\)
\(\frac{x-100}{99}+\frac{x-100}{49}+\frac{x-100}{31}+\frac{x-100}{23}=0\)
\(\left(x-100\right)\left(\frac{1}{99}+\frac{1}{49}+\frac{1}{31}+\frac{1}{23}\right)=0\)
x-100=0 ( vi 1/99+1/49+1/31+1/23 khác 0)
x=100
giải pt
\(\frac{6}{x^2+2}+\frac{12}{x^2+8}=3-\frac{7}{x^2+3}\)
Giải PT:
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Thực ra cũng EZ thôi :
\(\frac{6}{x^2-9}-1+\frac{4}{x^2-11}-1-\frac{7}{x^2-8}+1-\frac{3}{x^2-12}+1=0=>\)
\(\frac{15-x^2}{x^2-9}+\frac{15-x^2}{x^2-11}-\frac{15-x^2}{x^2-8}-\frac{15-x^2}{x^2-12}=0\)
=> \(\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}-\frac{1}{x^2-8}-\frac{1}{x^2-12}\right)=0\)
=>\(15-x^2=0=>x=\pm\sqrt{15}\)
Hình như còn nghiệm , any body help me ?
CẦN GẤP
Giải pt sau:
\(\frac{x-1}{99}+\frac{\left(x-2\right)}{49}+\frac{\left(x-7\right)}{31}+\frac{\left(x-8\right)}{23}=10\)
<=> (x-1)/99-1 + (x-2)/49-2 + (x-7)/31-3 +(x-8)/23-4=0
<=> (x-100)/99 + (x-100)/49 + (x-100)/31 + (x-100)/23=0
<=> (x-100)(1/99 + 1/49 + 1/31 + 1/23)=0
<=> x-100=0(vì 1/99 + 1/49 + 1/31 +1/23)
<=> x=100
Vậy PT có TN S={100}
Giải pt
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
ĐKXĐ: \(\left\{{}\begin{matrix}x^2\ne9\\x^2\ne11\\x^2\ne8\\x^2\ne12\end{matrix}\right.\Leftrightarrow x\notin\left\{3;-3;\sqrt{11};-\sqrt{11};2\sqrt{2};-2\sqrt{2};2\sqrt{3};-2\sqrt{3}\right\}\)
Đặt \(x^2-11=a\)(Điều kiện: \(a\notin\left\{-2;0;-3;1\right\}\))
PT\(\Leftrightarrow\frac{6}{a+2}+\frac{4}{a}-\frac{7}{a+3}-\frac{3}{a-1}=0\)
\(\Leftrightarrow\frac{6}{a+2}-1+\frac{4}{a}-1+\frac{-7}{a+3}+1+\frac{-3}{a-1}+1=0\)
\(\Leftrightarrow\frac{6-a-2}{a+2}+\frac{4-a}{a}+\frac{-7+a+3}{a+3}+\frac{-3+a-1}{a-1}=0\)
\(\Leftrightarrow-\frac{a-4}{a+2}-\frac{a-4}{a}+\frac{a-4}{a+3}+\frac{a-4}{a-1}=0\)
\(\Leftrightarrow\left(a-4\right)\left(-\frac{1}{a+2}-\frac{1}{a}+\frac{1}{a+3}+\frac{1}{a-1}\right)=0\)
\(\Leftrightarrow a-4=0\)
hay a=4
\(\Leftrightarrow x^2-11=4\)
\(\Leftrightarrow x^2=15\)
hay \(x=\pm\sqrt{15}\)
Giải PT
\(\frac{7}{8}\)x-5(x-9)=\(\frac{20x+1,5}{6}\)
\(\frac{7}{8}x-5\left(x-9\right)=\frac{20x-1,5}{6}\)
\(\Leftrightarrow\frac{7}{8}x-5x+45=\frac{10x}{3}-\frac{1}{4}\)
\(\Leftrightarrow\frac{-33}{8}x+45=\frac{10x}{3}-\frac{1}{4}\)
\(\Leftrightarrow\frac{-33}{8}x-\frac{10}{3}x=-\frac{1}{4}-45\)
\(\Leftrightarrow\frac{-179}{24}x=-\frac{181}{4}\)
\(\Leftrightarrow x=\frac{1086}{179}\)
\(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
\(\Rightarrow\frac{7}{8}x-5x+45=\frac{20x}{6}+\frac{1}{4}\)
\(\Rightarrow\frac{7}{8}x-\frac{40}{8}x+45=\frac{10x}{3}+\frac{1}{4}\)
\(\Rightarrow\frac{-33}{8}x+45=\frac{10x}{3}+\frac{1}{4}\)
\(\Rightarrow\frac{-33}{8}x-\frac{10x}{3}=\frac{1}{4}-45\)
\(\Rightarrow\frac{-179}{24}x=\frac{-179}{4}\)
\(\Rightarrow x=6\)
Vậy phương trình có 1 nghiệm là 6
1) Giải các pt:
a) 3(x - 1) - 2(x + 3)= -15
b) 3(x - 1) + 2= 3x - 1
c) 7(2 - 5x) - 5= 4(4 -6x)
2) Giải các pt phân thức: ( Tìm mẫu chung )
a) \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
b) \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
Giải pt:
a) \(x^2+\frac{9x^2}{\left(x+3\right)^2}=7\)
b) \(\frac{3x}{x^2-4x+1}+\frac{2x}{x^2+x+1}=\frac{8}{3}\)
a/ \(\Rightarrow x^2+9x=7\left(x+3\right)^2\)
\(\Rightarrow x^2+9x=7x^2+42x+63\).
\(\Rightarrow6x^2+33x+63=0\)
Có denta = 332 - 4.6.63 = -423 < 0
=> pt vô nghiệm
Vậy k có giá trị nào của x thỏa mãn biểu thức => \(x\in\phi\)
b) ĐK : ........
PT đã cho tương đương với :
\(\frac{3}{x-4+\frac{1}{x}}+\frac{2}{x+1+\frac{1}{x}}=\frac{8}{3}\)
Đặt x + 1/x + 1 = a
pt <=> \(\frac{3}{a-5}+\frac{2}{a}=\frac{8}{3}\)
giải pt với ẩn a
giải hệ pt
\(\left\{{}\begin{matrix}\frac{8xy}{x^2+6xy+y^2}+\frac{17}{8}\left(\frac{y}{x}+\frac{x}{y}\right)=\frac{21}{4}\\\sqrt{x-16}+\sqrt{y-9}=7\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge16\\y\ge9\end{matrix}\right.\)
Từ pt thứ nhất của hệ:
\(\frac{8xy}{x^2+y^2+6xy}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\)
\(\Leftrightarrow\frac{8}{\frac{x}{y}+\frac{y}{x}+6}+\frac{17}{8}\left(\frac{x}{y}+\frac{y}{x}\right)=\frac{21}{4}\)
Đặt \(\frac{x}{y}+\frac{y}{x}=t\ge2\)
\(\Rightarrow\frac{8}{6+t}+\frac{17}{8}t=\frac{21}{4}\)
\(\Leftrightarrow\frac{17}{8}t^2+\frac{15}{2}t-\frac{47}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=2\\t=-\frac{94}{17}< 0\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}=2\Leftrightarrow x^2+y^2=2xy\)
\(\Leftrightarrow\left(x-y\right)^2=0\Leftrightarrow x=y\)
Thay xuống pt dưới:
\(\sqrt{x-16}+\sqrt{x-9}=7\)
\(\Leftrightarrow\sqrt{x-16}-3+\sqrt{x-9}-4=0\)
\(\Leftrightarrow\frac{x-25}{\sqrt{x-16}+3}+\frac{x-25}{\sqrt{x-9}+4}=0\)
\(\Leftrightarrow...\)