Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bách Thảo
Xem chi tiết
FL.Hermit
2 tháng 9 2020 lúc 10:35

1 bài BĐT rất hay !!!!!!

BẠN PHÁ TOANG RA HẾT NHÁ SAU ĐÓ THÌ ĐƯỢC CÁI NÀY :33333

\(S=15\left(a^3+b^3+c^3\right)+6\left(a^2b+ab^2+b^2c+bc^2+a^2c+ac^2\right)-72abc\)

\(S=9\left(a^3+b^3+c^3\right)+6\left(a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\right)-72abc\)

\(S=9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-72abc\)

TA ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}\end{cases}}\)

=>    \(\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge9abc\)

=>    \(72abc\le8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(-72abc\ge-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)+6\left(a+b+c\right)\left(a^2+b^2+c^2\right)-8\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)-2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}\left(a+b+c\right)\)

TA LẠI TIẾP TỤC ÁP DỤNG BĐT SAU:   \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\Rightarrow\left(a+b+c\right)^2\le\frac{1}{3}\Rightarrow a+b+c\le\sqrt{\frac{1}{3}}\)

=>   \(S\ge9\left(a^3+b^3+c^3\right)-\frac{2}{9}.\sqrt{\frac{1}{3}}\)

TA LẦN LƯỢT ÁP DỤNG BĐT CAUCHY 3 SỐ SẼ ĐƯỢC:

\(a^3+a^3+\left(\sqrt{\frac{1}{27}}\right)^3\ge3a^2.\sqrt{\frac{1}{27}}\)

ÁP DỤNG TƯƠNG TỰ VỚI 2 BIẾN b; c ta sẽ được 1 BĐT như sau: 

=>   \(2\left(a^3+b^3+c^3\right)+3\left(\sqrt{\frac{1}{27}}\right)^3\ge\frac{3}{\sqrt{27}}\left(a^2+b^2+c^2\right)=\frac{3}{\sqrt{27}}.\left(\frac{1}{9}\right)=\frac{\sqrt{3}}{27}\)

=>   \(a^3+b^3+c^3\ge\frac{\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}\)

=>   \(S\ge\frac{9\left(\frac{\sqrt{3}}{27}-3\left(\sqrt{\frac{1}{27}}\right)^3\right)}{2}-\frac{2}{9}.\sqrt{\frac{1}{3}}\)

=>   \(S\ge\frac{1}{\sqrt{3}}\)

VẬY TA CÓ ĐPCM.

DẤU "=" XẢY RA <=>   \(a=b=c=\sqrt{\frac{1}{27}}\)

Khách vãng lai đã xóa
Ngo Phuong Thao
Xem chi tiết
Nguyễn Anh Quân
12 tháng 3 2018 lúc 21:14

2.

a, Có : (a+b+c).(1/a+1/b+1/c)

>= \(3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}\)

   = 9

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

Nguyễn Anh Quân
12 tháng 3 2018 lúc 21:18

2.

b, Xét : 2(a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9 ( theo bđt ở câu a đã c/m )

<=> (a+b+c).(1/a+b + 1/b+c + 1/c+a) >= 9/2

<=> a/b+c + b/c+a + c/a+b + 3 >= 9/2

<=> a/b+c + b/c+a + c/a+b >= 9/3 - 3 = 3/2

=> ĐPCM

Dấu "=" xảy ra <=> a=b=c > 0

๖Fly༉Donutღღ
12 tháng 3 2018 lúc 21:21

1) Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2 

\(\Rightarrow a+b+c=2\)

Trong một tam giác ta có: 

\(a< b+c\)

\(\Rightarrow a+a< a+b+c\)

\(\Rightarrow2a< 2\Rightarrow a< 1\)

Tương tự ta  cũng có : b < 1 và c < 1 

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Rightarrow\left(1-b-a+ab\right)\left(1-c\right)>0\)

\(\Rightarrow1-c-b+bc-a+ac+ab-abc>0\)

\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca>abc\)

Nên abc < -1 + ab + bc + ca 

\(\Rightarrow2abc< -2+2ab+2bc+2ac\)

\(\Rightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2-2+2ab+2ac+2bc\)

\(\Rightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2-2\)

\(\Rightarrow a^2+b^2++c^2+2abc< 2^2-2\)

\(\Rightarrow a^2+b^2+c^2+2abc< 2\left(đpcm\right)\)

Hoàng Tử Lớp Học
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
26 tháng 11 2020 lúc 19:25

Tự nhiên lục được cái này :'( 

3. Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{\left(1+1\right)^2}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{\left(1+1\right)^2}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

Cộng theo vế ta có điều phải chứng minh

Đẳng thức xảy ra <=> a = b = c 

Khách vãng lai đã xóa
vũ xuân
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 6 2019 lúc 19:12

a/ BĐT sai, cho \(a=b=c=2\) là thấy

b/ \(VT=\frac{a^4}{a^2+2ab}+\frac{b^4}{b^2+2bc}+\frac{c^4}{c^2+2ac}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)}{\left(a+b+c\right)^2}\)

\(VT\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^2}{3\left(a+b+c\right)^2}=\frac{1}{3}\left(a^2+b^2+c^2\right)\)

Dấu "=" xảy ra khi \(a=b=c\)

c/ Tiếp tục sai nữa, vế phải là \(\frac{3}{2}\) chứ ko phải \(2\), và hy vọng rằng a;b;c dương

\(VT=\frac{a^2}{abc.b+a}+\frac{b^2}{abc.c+b}+\frac{c^2}{abc.a+c}\ge\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)+a+b+c}\)

\(VT\ge\frac{9}{3abc+3}\ge\frac{9}{\frac{3\left(a+b+c\right)^3}{27}+3}=\frac{9}{\frac{3.3^3}{27}+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Nguyễn Việt Lâm
23 tháng 6 2019 lúc 14:52

Ta có:

\(a^3+b^3+b^3\ge3ab^2\) ; \(b^3+c^3+c^3\ge3bc^2\) ; \(c^3+a^3+a^3\ge3ca^2\)

Cộng vế với vế \(\Rightarrow a^3+b^3+c^3\ge ab^2+bc^2+ca^2\)

\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}=\frac{a^6}{ab^2}+\frac{b^6}{bc^2}+\frac{c^6}{ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{ab^2+bc^2+ca^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3}=a^3+b^3+c^3\)

Nguyễn Tuấn Hào
Xem chi tiết
Nguyễn Minh Quang
8 tháng 5 2021 lúc 9:35

Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)

Suy ra    \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)

Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)

\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)

dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)

Khách vãng lai đã xóa
UTV Kool
Xem chi tiết
nthv_.
20 tháng 10 2021 lúc 23:48

Akai Haruma
20 tháng 10 2021 lúc 23:49

Lời giải:
\(A=(2ab)^2-(a^2+b^2-c^2)^2=[2ab+(a^2+b^2-c^2)][2ab-(a^2+b^2-c^2)]\)

\(=[(a+b)^2-c^2][c^2-(a-b)^2]=(a+b-c)(a+b+c)(c-a+b)(c+a-b)\)

\(=(a+b+c)(a+b-c)(b+c-a)(c+a-b)>0\) theo BĐT tam giác

Do đó ta có đpcm.

nthv_.
20 tháng 10 2021 lúc 23:59

undefined

Vũ Huy Đô
Xem chi tiết
Phùng Minh Quân
21 tháng 1 2019 lúc 21:00

\(1)\)

\(A=a\left(a^2+2b\right)+b\left(b^2-a\right)=a^3+2ab+b^3-ab=a^3+b^3+ab\)

\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+ab=a^2+b^2\ge\frac{\left(a+b\right)^2}{1+1}=\frac{1}{2}\) ( Cauchy-Schwarz dạng Engel ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=\frac{1}{2}\)

\(2)\)

\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}=\frac{1}{\frac{a+b+c}{2}-a}+\frac{1}{\frac{a+b+c}{2}-b}+\frac{1}{\frac{a+b+c}{2}-c}\)

\(=2\left(\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}\right)\)

Có : \(\hept{\begin{cases}b-a< c\\c-b< a\\a-c< b\end{cases}}\)

\(2\left(\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}\right)>2\left(\frac{1}{2c}+\frac{1}{2a}+\frac{1}{2b}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) ??? 

Thanh Tùng DZ
21 tháng 1 2019 lúc 21:01

1.  A = a(a2 + 2b) + b(b2 - a)

A = a3 + 2ab + b3 - ab

A = a3 + ab + b3

A = ( a + b ) ( a2 - ab + b2 ) + ab

A = a2 + b2

Mà ( a - b )2 \(\ge\)0 với mọi a,b

 \(\Rightarrow\)a2 + b2 \(\ge\)2ab \(\Rightarrow\)2 . ( a2 + b2 ) \(\ge\)( a + b )2 = 1 \(\Rightarrow\)( a2 + b\(\ge\)\(\frac{1}{2}\)

\(\Rightarrow\)\(\ge\)\(\frac{1}{2}\)  . Dấu " = " xảy ra \(\Leftrightarrow\)a = b \(\frac{1}{2}\)

Thanh Tùng DZ
21 tháng 1 2019 lúc 21:06

2) vì a,b,c là 3 cạnh của 1 tam giác nên a,b,c > 0 ; p - a > 0 ; p - b > 0 ; p - c > 0

Áp dụng BĐT : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\). Dấu " = " xảy ra \(\Leftrightarrow\)x = y

Ta có : \(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{2p-a-b}=\frac{4}{c}\)

Tương tự : \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{2p-b-c}=\frac{4}{a};\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{2p-c-a}=\frac{4}{b}\)

Cộng từng vế 3 BĐT, ta được : 

\(2.\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c

Vũ Đăng
Xem chi tiết
bach nhac lam
Xem chi tiết
Ngô Bá Hùng
18 tháng 11 2019 lúc 20:54

1. Vai trò a, b, c như nhau. Không mất tính tổng quát. Giả sử \(a\ge b\ge0\)

\(ab+bc+ca=3\). Do đó \(ab\ge1\)

Ta cần chứng minh rằng \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\left(1\right)\)

\(\frac{2}{1+ab}+\frac{1}{1+c^2}\ge\frac{3}{2}\left(2\right)\)

Thật vậy: \(\left(1\right)\Leftrightarrow\frac{1}{1+a^2}-\frac{1}{1+ab}+\frac{1}{1+b^2}-\frac{1}{1+ab}\ge0\\ \Leftrightarrow\left(ab-a^2\right)\left(1+b^2\right)+\left(ab-b^2\right)\left(1+a^2\right)\ge0\\ \Leftrightarrow\left(a-b\right)\left[-a\left(1+b^2\right)+b\left(1+a^2\right)\right]\ge0\\ \Leftrightarrow\left(a-b\right)^2\left(ab-1\right)\ge0\left(BĐT:đúng\right)\)

\(\left(2\right)\Leftrightarrow c^2+3-ab\ge3abc^2\\ \Leftrightarrow c^2+ca+bc\ge3abc^2\Leftrightarrow a+b+c\ge3abc\)

BĐT đúng, vì \(\left(a+b+c\right)^2>3\left(ab+bc+ca\right)=q\)

\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\)

Nên \(a+b+c\ge3\ge3abc\)

Từ (1) và (2) ta có \(\frac{1}{1+a^2}+\frac{1}{1+b^2}+\frac{1}{1+c^2}\ge\frac{3}{2}\)

Dấu ''='' xảy ra \(\Leftrightarrow a=b=c=1\)

Khách vãng lai đã xóa
Ngô Bá Hùng
18 tháng 11 2019 lúc 21:16

Áp dụng BĐT Cauchy dạng \(\frac{9}{x+y+z}\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\), ta được

\(\frac{9}{a+3b+2c}=\frac{1}{a+c+b+c+2b}\le\frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Do đó ta được

\(\frac{ab}{a+3b+2c}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)=\frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Hoàn toàn tương tự ta được

\(\frac{bc}{2a+b+3c}\le\frac{1}{9}\left(\frac{bc}{a+b}+\frac{bc}{b+c}+\frac{b}{2}\right);\frac{ac}{3a+2b+c}\le\frac{1}{9}\left(\frac{ac}{a+b}+\frac{ac}{b+c}+\frac{c}{2}\right)\)

Cộng theo vế các BĐT trên ta được

\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{1}{9}\left(\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}+\frac{bc+ab}{a+c}+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\)Vậy BĐT đc CM

ĐẲng thức xảy ra khi và chỉ khi a = b = c >0

Khách vãng lai đã xóa
Akai Haruma
18 tháng 11 2019 lúc 22:38

Bài 2:

Áp dụng BĐT AM-GM:

\(a^2+2b^2+c^2=(a^2+b^2)+(a^2+c^2)\geq 2\sqrt{(a^2+b^2)(a^2+c^2)}\geq 2\sqrt{\frac{(a+b)^2}{2}.\frac{(a+c)^2}{2}}=(a+b)(a+c)\)

\(\Rightarrow \frac{ab^2}{a^2+2b^2+c^2}\leq \frac{ab^2}{(a+b)(a+c)}\)

Hoàn toàn tương tự với các phân thức còn lại:

\(\Rightarrow \text{VT}\leq \sum \frac{ab^2}{(a+b)(a+c)}=\frac{a^2b^2+b^2c^2+c^2a^2+abc(a+b+c)}{(a+b)(b+c)(c+a)}\)

Ta cần CM: \(\frac{a^2b^2+b^2c^2+c^2a^2+abc(a+b+c)}{(a+b)(b+c)(c+a)}\leq \frac{a+b+c}{4}\)

\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)(a+b)(b+c)(c+a)\)

\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)(a+b)(b+c)(c+a)\)

\(\Leftrightarrow 4(a^2b^2+b^2c^2+c^2a^2)+4abc(a+b+c)\leq (a+b+c)[(a+b+c)(ab+bc+ac)-abc]\)

\(\Leftrightarrow 2(a^2b^2+b^2c^2+c^2a^2)\leq (a^3b+ab^3)+(bc^3+b^3c)+(ca^3+c^3a)\)

(dễ thấy luôn đúng do theo BĐT AM-GM)

Do đó ta có đpcm.

Dấu "=" xảy ra khi $a=b=c$

Khách vãng lai đã xóa