Cho x,y,z chứng minh bất đẳng thức
X/x^2+y^2 +y/y^2+z^2 +z/x^2+z^2 <_ 1/2(1/x+1/y+1/z)
cho các số x,y,z thỏa mãn \(x\ge y\ge z>0\). chứng minh bất đẳng thức: \(\frac{x^2-y^2}{z}+\frac{z^2-y^2}{x}+\frac{x^2-z^2}{y}\ge3x-4y+z\)
Chứng minh bất đẳng thức sau:\(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)
\(BĐT\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{x+z}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{3}{2}+3=\dfrac{9}{2}\\ \Leftrightarrow\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge9\left(1\right)\)
Áp dụng BĐT Cauchy:
\(\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\ge3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge3\sqrt[3]{\dfrac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)
Nhân vế theo vế 2 BĐT ta được
\(\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\ge3\cdot3\sqrt[3]{1}=9\)
Do đó \(\left(1\right)\) luôn đúng
Vậy ta được đpcm
Phải có thêm dữ kiện x,y,z > 0 nữa nhé.
Áp dụng BĐT C - S dạng Engel, ta có:
Cycma(x/(y + z)) = cycma(x^2/(xy + xz)) >= cycma(x)^2/(2cycma(xy)) >= cycma(x)^2/((2cycma(x)^2)/3) = 3/2 (đpcm)
đây là BĐT Nesbit cho 3 số thực dương nên thiếu điều kiện x,y,z\(\in R\)*
chứng minh bất đẳng thức x^2*(1+y^2)+y^2*(1+z^2)+z^2*(x+x^2)> hoặc bằng 6xyz
x2+y2z2>=2lxl.lyl.lzl nên VT>=6lxl.lyl.lzl>=6xyz
chứng minh bất đẳng thức x^2*(1+y^2)+y^2*(1+z^2)+z^2*(x+x^2)> hoặc bằng 6xyz
cho 3 số dương x,y,z thoã mãn điều kiện x^3+y^3+z^3=1 chứng minh bất đẳng thức
\(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\)
\(\frac{x^2}{\sqrt{1-x^2}}=\frac{x^3}{\sqrt{x^2}.\sqrt{1-x^2}}\ge\frac{x^3}{\frac{x^2+1-x^2}{2}}=2x^3\)
Tương tự
\(\frac{y^2}{\sqrt{1-y^2}}\ge2y^3;\frac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Cộng vế theo vế
\(VT\ge2\left(x^3+y^3+z^3\right)=2\)
chứng minh từ đẳng thức (x-y)^2+(y-z)^2+ (z+x)^2= (x+y-2z)^2+ (y+z-2x)^2 + (z+x-2y) ta suy ra x=y=z
Chứng minh đẳng thức
3(x^2+y^2+z^2)-(x-y)^2-(y-z)^2-(z-x)^2=(x+y+z)^2
\(VT=3\left(x^2+y^2+z^2\right)-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow3x^2+3y^2+3z^2-x^2+2xy-y^2-y^2+2yz-z^2-z^2+2xz-x^2=\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz=\left(x+y+z\right)^2\)* luôn đúng *
Vậ ta có đpcm
Giải bài toán sau bằng phương pháp chứng minh phản chứng: “Chứng minh rằng với mọi x, y, z bất kì thì các bất đẳng thức sau không đồng thời xảy ra x < y − z ; y < z − x ; z < x − y ”
Một học sinh đã lập luận tuần tự như sau:
(I) Giả định các đẳng thức xảy ra đồng thời.
(II) Thế thì nâng lên bình phương hai vế các bất đẳng thức, chuyển vế phải sang vế trái, rồi phân tích, ta được:
(x – y + z)(x + y – z) < 0
(y – z + x)(y + z – x) < 0
(z – x + y)(z + x – y) < 0
(III) Sau đó, nhân vế theo vế ta thu được:(x – y + z ) 2 (x + y – z)(-x + y + z) < 0 (vô lí)
Lý luận trên, nếu sai thì sai từ giai đoan nào?
A. (I)
B. (II)
C. (III)
D. Lý luận đúng
Chứng minh bất đẳng thức sau với x,y,z dương \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\ge\frac{9}{2\left(x+y+z\right)}\)
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\) ta có:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\)
\(\ge\frac{9}{x+y+y+z+x+z}=\frac{9}{2\left(x+y+z\right)}\)
Dấu "=" xảy ra khi \(x=y=z\)