Tìm nghiệm của H(x)
\(H\left(x\right)=-2x^3+2x\)
BÀI 2: cho 2 đa thức:
\(f_x=2x^2\left(x-1\right)-5\left(x+2\right)-2x\left(x-2\right)\)
\(g_x=x^2\left(2x-3\right)-x\left(x+1\right)-\left(3x-2\right)\)
a. thu gọn và sắp xếp f(x),g(x) theo thứ tự giảm dần của biến.
b. tính h(x) = f(x)-g(x) và tìm nghiệm của h(x).
a, \(f\left(x\right)=2x^2\left(x-1\right)-5\left(x+2\right)-2x\left(x-2\right)\)
\(=2x^3-2x^2-5x-10-2x^2+4x=2x^3-4x^2-x-10\)
b, \(g\left(x\right)=x^2\left(2x-3\right)-x\left(x+1\right)-\left(3x-2\right)\)
\(=2x^3-3x^2-x^2-x-3x+2=2x^3+2-4x^2-4x\)
b, Ta có : \(H\left(x\right)=F\left(x\right)-G\left(x\right)=2x^3-4x^2-x-10-2x^3+4x^2+4x-2\)
\(\Leftrightarrow3x-12=0\Leftrightarrow x=4\)
Cho f(x)=\(5x^3-7x^2+7x+7\);g(x)=\(7x^3-7x^2+2x+5\);h(x)=\(2x^3+4x+1\)
a)Tính \(f\left(-1\right);g\left(\frac{-1}{2}\right);h\left(0\right)\)
b)Tính k(x)=f(x)-g(x)+h(x); m(x)=3h(x)-2f(x)
c)Tìm nghiệm của m(x)
M(x)=\(\left(3x^4-x^3-2x^2+4x-1\right)-\left(3x^4-x^3-x^2-2x-1\right)\)
Hãy tìm nghiệm của M(x)
Ta có
Nghiệm M(x) =(3x4−x3−2x2+4x−1)−(3x4−x3−x2−2x−1)=0
=> 3x4−x3−2x2+4x−1− 3x4+x3+x2+2x+1=0
=> 6x = 0
=> x= 0
=> x=0 là nghiệm của đa thức M(x)
cho 2 đa thức
\(f\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4\)
\(g\left(x\right)=x^5-9+2x^2+7x^4+2x^3-3x^{ }\)
a,sắp xếp các đa thức theo lũy thừa giảm của biến
tính tổng \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
c,tìm nghiệm của đa thức \(h\left(x\right)\)
a)f(x)=-x5-7x4-2x3+x2+4x+9
g(x)=x5+7x4+2x3+2x2-3x-9
b)h(x)=f(x)+g(x)
=(-x5-7x4-2x3+x2+4x+9)+(x5+7x4+2x3+2x2-3x-9)
=-x5-7x4-2x3+x2+4x+9+x5+7x4+2x3+2x2-3x-9
=-x5+x5-7x4+7x4-2x3+2x3+x2+2x2+4x-3x+9-9
=3x2+x
Vậy h(x)=3x2+x
c)ta có h(x)=0
=>3x2+x=0
x(3x+1)=0
x=0 hoặc 3x+1=0
x=0 hoặc x=-1/3
vậy nghiệm của đa thức h(x) là x=0 hoặc x=-1/3
Cho đa thức :
\(F\left(x\right)2x^5+x^4+1x^2+x+1\)
\(G\left(x\right)=2x^5+x^4-x^2+1\)
Tính \(h\left(x\right)=f\left(x\right)-g\left(x\right)\)và tìm nghiệm của đa thức
\(f_{\left(x\right)}-g_{\left(x\right)}=2x^5+x^4+1x^2+x+1-\left(2x^5+x^4-x^2+1\right)\)
\(=2x^5+x^4+1x^2+x+1-2x^5-x^4+x^2-1\)
\(=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(1x^2+x^2\right)+x+\left(1-1\right)\)
\(=2x^2+x\)
+, Đặt \(2x^2+x=0\)
\(\Leftrightarrow x.2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=0\end{cases}}\Leftrightarrow x=0\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)\)
\(h\left(x\right)=\left(2x^5+x^4+1x^2+x+1\right)-\left(2x^5+x^4-x^2+1\right)\)
\(h\left(x\right)=2x^5+x^4+x^2+x+1-2x^5-x^4+x^2-1\)
\(h\left(x\right)=\left(2x^5-2x^5\right)+\left(x^4-x^4\right)+\left(x^2+x^2\right)+\left(1-1\right)+x\)
\(h\left(x\right)=0+0+2x^2+0+x\)
\(h\left(x\right)=2x^2+x\)
211. Thu gọn rồi tìm nghiệm của các đa thức sau :
a) \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
b) \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x\)
c) \(h\left(x\right)=x\left(x-1\right)+1\)
a, \(x-2x^2+2x^2-x+4=4\)
b,\(x^2-5x-x^2-2x+7x=0\)
c,\(x^2-x+1\)
\(\Leftrightarrow x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Cho 2 đa thức :
f(x) = \(2x^2.\left(x-1\right)-5.\left(x+2\right)-2x.\left(x-2\right)\)
g(x) = \(x^2.\left(2x-3\right)-x.\left(x+1\right)-\left(3x-2\right)\)
a, thu gọn và sắp xếp f(x) và g(x) theo lũy thừa giảm dần
b, Tính h(x) = f(x) - g(x) và tìm nghiệm của h(x)
Cho hàm số \(y=f\left(x\right)=3\left|x-1\right|-\left|2x+2\right|.\)
1. Tìm GTNN của hàm số
2. Tìm tham số m để \(3\left|x-2\right|-\left|2x+2\right|=m\) có hai nghiệm dương phân biệt.
tìm n của phương trình \(x^2-\dfrac{2n-2x}{4}-2x+5n=x^3-9x^2+10\)
có nghiệm bằng \(\dfrac{1}{3}\)của phương trình \(\left(x+1\right)\left(x+3\right)=x\left(x-3\right)+24\)