Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Linh Chi
Xem chi tiết
Tuan le anh
1 tháng 8 2019 lúc 20:02

phân tích thôi mà  qua facebook BnoHi mình chỉ 

Trang
Xem chi tiết
Loan Trinh
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết
kudo shinichi
18 tháng 1 2019 lúc 10:46

Xem câu hỏi

Bạn tham khảo tại link này nhé

Nguyễn Hoàng Anh Phong
18 tháng 1 2019 lúc 15:02

Thay abc = 1 vào biểu thức:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=\frac{a}{a.\left(b+1+bc\right)}+\frac{b}{bc+b+1}+\frac{c}{c.a.\left(b+1+bc\right)}.\)

\(=\frac{a}{a.\left(b+1+bc\right)}+\frac{ba}{a.\left(bc+b+1\right)}+\frac{1}{a.\left(b+1+bc\right)}\)

\(=\frac{ab+a+1}{a.\left(b+1+bc\right)}=\frac{a.\left(b+1+bc\right)}{a.\left(b+1+bc\right)}=1\)

=> đpcm

Nguyễn Kim Thành
Xem chi tiết
Thanh Tùng DZ
16 tháng 2 2019 lúc 18:10

mình nghĩ đề thế này, do bạn ko viết a+1,b+1,c+1 dưới mẫu

Cho abc = 1 . CMR : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}=1\)

                                             GIẢI

Ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{abc}{a^2bc+abc+ab}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)

\(=\frac{ab+a+1}{ab+a+1}=1\)

Nguyễn Linh Chi
16 tháng 2 2019 lúc 17:42

Em kiểm tra lại đề bài nhé !

༺Tiểu Bạch Dương༻
Xem chi tiết
Nguyễn Kim Thành
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 2 2019 lúc 17:50

Chắc bạn viết nhầm đề, cho \(a=b=c=1\) đâu có đúng

Sửa lại đề: cho \(abc=1\) chứng minh \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=1\)

Ta có

\(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}=\dfrac{a}{ab+a+1}+\dfrac{ab}{abc+ab+a}+\dfrac{c}{ac+c+abc}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{1+ab+a}+\dfrac{c}{c\left(a+1+ab\right)}\)

\(=\dfrac{a}{ab+a+1}+\dfrac{ab}{ab+a+1}+\dfrac{1}{ab+a+1}\)

\(=\dfrac{a+ab+1}{ab+a+1}=1\) (đpcm)

Nguyễn Thành Trương
16 tháng 2 2019 lúc 18:11

Hỏi đáp Toán

Đề bạn Lâm đúng đấy!

Hỏa Hỏa
Xem chi tiết
Akai Haruma
2 tháng 5 2018 lúc 20:45

Lời giải:

Ta có:

\(\text{VT}=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{a.c}{abc+ac+c}+\frac{b.ac}{bc.ac+b.ac+ac}+\frac{c}{ac+c+1}\)

\(=\frac{ac}{1+ac+c}+\frac{1}{c+1+ac}+\frac{c}{ac+c+1}\) (thay \(abc=1\) )

\(=\frac{ac+1+c}{ac+1+c}=1\)

Ta có đpcm.

Trịnh Phương Khanh
Xem chi tiết
Hiiiii~
14 tháng 9 2017 lúc 21:23

Giải:

Biến đổi vế trái, ta được:

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\)

\(=\left(ab-a-b+1\right)\left(c-1\right)\)

\(=abc-ab-ac+a-bc+b+c-1\)

\(=abc-ab-ac-bc+a+b+c-1\)

\(=abc-\left(ab+ac+bc\right)+\left(a+b+c\right)-1\)

Thay ab + ac + bc = abc và a + b + c = 1, ta được:

\(=abc-abc+1-1\)

\(=0\)

\(\Rightarrowđpcm\).

Chúc bạn học tốt!