giải phương trình x(x-1)+2(1-x)=0
Giải phương trình : x^2+ 1/x^2+ 6.(x+1/x)+ 10=0
đặt nhé : đặt \(x+\frac{1}{x}=a.....=>x^2+\frac{1}{x^2}=a^2-2...\)
(x-1)(x-3)(x-5)(X-2) - 20 = 0. giải phương trình
Bài 1 : Giải phương trình bằng cách đưa về phương trình tích
a) (2x+1) (3x-2) = (5x-8) (2x+1)
b) (4x^2-1) = (2x+1) (3x-5)
c) (x+1)^2 = 4 . (x^2-2x+1)
d) 2x^3 + 5x^2 - 3x = 0
Bài 2 : Giải phương trình :
a) 1/2x-3 - 3/x.(2x-3) = 5/x
b) x+2/x-2 - 1/x = 2/x.(x-2)
c) x+1/x-2 + x-1/x+2 = 2(x^2+2)/x^2-4
Bài 3 : Giải phương trình :
x^4 + x^3 + 3x^2 + 2x + 2 = 0
Help mee
câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
bước sau tự làm nốt nha !
câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a
Bài 2:
a: \(\dfrac{1}{2x-3}-\dfrac{3}{x\left(2x-3\right)}=\dfrac{5}{x}\)
\(\Leftrightarrow x-3=5\left(2x-3\right)=10x-15\)
=>-9x=-12
hay x=4/3
b: \(\Leftrightarrow x\left(x+2\right)-x+2=2\)
=>x2+2x-x+2=2
=>x2+x=0
=>x=0(loại) hoặc x=-1(nhận)
c: \(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2+3x+2+x^2-3x+2=2x^2+4\)
=>4=4(luôn đúng)
Vậy: S={x|x<>2; x<>-2}
cho phương trình ẩn x: \(9x^2-25-k^2-2kx=0\)
a,Giải phương trình với k=0
b,Tìm các giá trị của k sao cho phương trình nhận x=-1 làm nghiệm số
thay k=0 vào pt ta được
\(9x^2-25-0^2-2.0x=0\)
=>\(9x^2-25=0\)
=>\(\left(3x-5\right)\left(3x+5\right)=0\)
=>\(3x+5=0=>x=\dfrac{-5}{3}\)
hoặc \(3x-5=0=>x=\dfrac{5}{3}\)
cho phương trình ẩn x: \(9x^2-25-k^2-2kx=0\)
a,Giải phương trình với k=0
b,Tìm các giá trị của k sao cho phương trình nhận x=-1 làm nghiệm số
Thay `k=0` vào pt ta có:
`9x^2-25-0-0=0`
`<=>9x^2=25`
`<=>x^2=25/9`
`<=>x=+-5/3`
`b)x=-1` làm nghiệm nên ta thay `x=-1` vào pt thì pt =0
`=>9.1-25-k^2-2k(-1)=0`
`<=>-16-k^2+2k=0`
`<=>k^2-2k+16=0`
`<=>(k-1)^2+15=0` vô lý
Vậy khong có giá trị của k thỏa mãn đề bài
4x^2 - 5x - 4√(x-1) - 2 = 0 giải phương trình
\(4x^2-5x-4\sqrt{x-1}-2=0\left(x\ge1\right)\)
\(\Leftrightarrow\left(4x^2-4x+1\right)-\left(x-1+4\sqrt{x-1}+4\right)=0\)
\(\Leftrightarrow\left(2x-1\right)^2-\left(\sqrt{x-1}+2\right)^2=0\)
\(\Leftrightarrow\left(2x-1-\sqrt{x-1}-2\right)\left(2x-1+\sqrt{x-1}+2\right)=0\)
\(\Leftrightarrow\left(2x-\sqrt{x-1}-3\right)\left(2x+\sqrt{x-1}+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=2x-3\\\sqrt{x-1}=-\left(2x+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x\in\varnothing\end{matrix}\right.\)
Vậy với x = 2 thì thỏa mãn pt
Giải phương trình: \(x^3-\frac{1}{x^3}-2(x-\frac{1}{x})-2=0\).
ĐKXĐ: ...
Đặt \(x-\frac{1}{x}=a\Rightarrow a^3=x^3-\frac{1}{x^3}-3\left(x-\frac{1}{x}\right)\Rightarrow x^3-\frac{1}{x^3}=a^3+3a\)
Phương trình trở thành:
\(a^3+3a-2a-2=0\Leftrightarrow a^3+a-2=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a+2\right)=0\)
\(\Rightarrow a=1\Rightarrow x-\frac{1}{x}=1\Rightarrow x^2-x-1=0\)
Cho phương trình x2-mx-1=0
Không giải phương trình CHỨNG MINH rằng với mọi m ta luôn có |x1-x2 |>=2
Ta có x1x2 = -1
=> x1 = -\(\frac{1}{x_2}\)
=> x1 - x2 = x1 + \(\frac{1}{x_1}\)
x1 > 0 thì
x1 + \(\frac{1}{x_1}\) >= 2\(\sqrt{x_1\frac{1}{x_1}}\)= 2
x1 < 0 thì
x1 + \(\frac{1}{x_1}\) <= -2\(\sqrt{x_1\frac{1}{x_1}}\)= -2
Vậy: |x1-x2| >= 2
Trước khi làm hình như phải cm pt có nghiệm?
( a = 1, b = -m, c = -1)
\(\Delta=b^2-4ac\)
\(=\left(-m\right)^2-4.1.\left(-1\right)\)
\(=m^2+4>0\forall m\)
Vậy pt luôn có 2 nghiệm pb với mọi m
đenta = m^2 +4 >= 4 >0 với mọi m
=> pt luôn có 2 ng x(1) ; x(2)
theo hệ thức Vi-Et có ; x1 + x2 =m và x1 x2 =-1 (1)
Ta có : |x1 -x2|>=2 <=> (x1 -x2 ) ^2 >=4 <=> x1 ^2 -2x1 x2 + x2 ^2 .=4 <=> (x1 +x2)^2 -4x1 x2 >=4 (2)
thay (2) vào (1) có : m^2 +4 >=4
vì m^2 >=0 Vmọi m => m^2 + 4 >=4 Vmọi m hay |x1 -x2 | >= 2 Vmọi m ==>> dpcm :)
Giải phương trình: \((x^2+1)+3x(x^2+1)+2x^2=0\)
\(\left(x^2+1\right)+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)+2.1,5x.\left(x^2+1\right)+\left(1,5x\right)^2-0,25x^2=0\)
\(\Leftrightarrow\left(x^2+1,5x+1\right)^2-\left(0,5x\right)^2=0\)
\(\Leftrightarrow\left(x^2+1,5x+1-0,5x\right)\left(x^2+1,5x+1+0,5x\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x+1\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\\\left(x+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+\frac{1}{4}+\frac{3}{4}=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow x=-1\)
Vậy nghiệm của phương trình là x = -1.